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Abstract. In the last years, techniques for activity recognition have at-
tracted increasing attention. Among many applications, a special interest
is in the pervasive e-Health domain where automatic activity recognition
is used in rehabilitation systems, chronic disease management, monitor-
ing of the elderly, as well as in personal well being applications. Re-
search in this field has mainly adopted techniques based on supervised
learning algorithms to recognize activities based on contextual condi-
tions (e.g., location, surrounding environment, used objects) and data
retrieved from body-worn sensors. Since these systems rely on a suffi-
ciently large amount of training data which is hard to collect, scalability
with respect to the number of considered activities and contextual data
is a major issue. In this paper, we propose the use of ontologies and on-
tological reasoning combined with statistical inferencing to address this
problem. Our technique relies on the use of semantic relationships that
express the feasibility of performing a given activity in a given context.
The proposed technique neither increases the obtrusiveness of the sta-
tistical activity recognition system, nor introduces significant computa-
tional overhead to real-time activity recognition. The results of extensive
experiments with data collected from sensors worn by a group of volun-
teers performing activities both indoor and outdoor show the superiority
of the combined technique with respect to a solely statistical approach.
To the best of our knowledge, this is the first work that systematically
investigates the integration of statistical and ontological reasoning for
activity recognition.

1 Introduction

There is a general consensus on the fact that effective automatic recognition
of user activities would greatly enhance the ability of a pervasive system to
properly react and adapt to the circumstances. Among many applications of
activity recognition, a special interest is in the pervasive e-Health domain where
automatic activity recognition is used in rehabilitation systems, chronic disease
management, monitoring of the elderly, as well as in personal well being appli-
cations (see, e.g., [1–3]).



Example 1. Consider the case of Alice, an elderly person undergoing rehabilitation af-
ter having been hospitalized for a minor heart attack. In order to help Alice in correctly
following the practitioners’ prescriptions about the physical activities to perform during
rehabilitation, the hospital center provides her with a monitoring system that contin-
uously keeps track of her physiological data as well as of her activities. In particular,
physiological data (e.g., heart rate and blood pressure) are acquired by wearable sensors
that transmit them through a wireless link to the monitoring application hosted on her
mobile phone. Similarly, accelerometer data provided by a smartwatch are transmitted
to the monitoring application and merged with those provided by the accelerometer
integrated in her mobile phone to automatically infer her current physical activity. On
the basis of physiological data and performed activities, the monitoring application
provides Alice with alerts and suggestions to better follow her rehabilitation plan (e.g.,
“please consider to take a walk this morning”, or “take some rest now”). Moreover,
those data are reported to the medical center on a daily basis for further processing.

Of course, for such a system to be effective, the activity recognition mod-
ule must provide very accurate results. In fact, if activities are wrongly recog-
nized, the monitoring system may draw erroneous conclusions about the actual
adherence of the patient to the practitioners’ prescriptions, as well as provide
error-prone statistics about the health status of the patient.

A research direction consists in devising techniques to recognize activities
using cameras with the help of sound, image and scene recognition software
(see, e.g., [4, 5]), but this is limited to very confined environments and often
subject to serious privacy concerns, clearly perceived by the monitored users.

Alternative activity recognition techniques are based on data acquired from
body-worn sensors (e.g., motion tracking and inertial sensors, cardio-frequency
meters, etc) and on the application of statistical learning methods. Early at-
tempts in this sense were mainly based on the use of data acquired from multi-
ple body-worn accelerometers (e.g., [6, 7]). One of the main limitations of these
early systems relied on the fact that they did not consider contextual informa-
tion (such as current location, environmental conditions, surrounding objects)
that could be usefully exploited to derive the user’s activity (for simplicity, in
the rest of this paper we refer to this kind of data as context). As a consequence,
later approaches were aimed at devising activity recognition systems taking into
account the user’s context. For instance, in [8] a method is proposed to clas-
sify physical activities by considering not only data retrieved from a body-worn
accelerometer, but also environmental data acquired from several other sensors
(sound, humidity, acceleration, orientation, barometric pressure, . . . ). Spatio-
temporal traces are used in [9] to derive high-level activities such as shopping
or dining out. Observations regarding the user’s surrounding environment (in
particular, objects’ use), possibly coupled with body-worn sensor data, are the
basis of many other activity recognition systems (e.g., [10, 11]).

Most of these systems rely on the application of supervised learning algo-
rithms that, in order to perform well, need to be trained with a sufficiently large
amount of labeled data. Indeed, with an insufficient set of training data, to con-
sider a wide set of context data would be ineffective, if not counterproductive,
since the classifier could draw erroneous predictions due to the problem of over-



fitting. For instance, in [8] some available context data are discarded in order
to avoid this problem, that is one of the main reasons why activity recognition
systems do not perform well out of the laboratory. Since training data are very
hard to acquire, systems relying on supervised learning are prone to serious scal-
ability issues the more activities and the more context data are considered. For
instance, suppose to consider as the only context data the user’s current symbolic
location (e.g., kitchen, dining room, mall, park, etc). Even in this simple case,
in order to gain good recognition results a sufficiently large set of training data
should be acquired for each activity in any considered location. Of course, such
a large set of training data is very hard to obtain. Moreover, when we consider
as context not only location but also environmental conditions and surrounding
objects, the task of collecting a sufficient amount of training data is very likely
to become unmanageable, since training data should be acquired in any possible
contextual condition. This challenging issue has been addressed (e.g., in [12])
by means of a combination of supervised and unsupervised learning techniques.
Even if similar techniques can be adopted to mitigate the problem, it is unlikely
that they can provide a definitive solution.

In this paper we investigate the use of ontological reasoning coupled with
statistical reasoning in order to address the above-mentioned problem. The in-
tuition behind our solution is that very useful hints about the possible activities
performed by a user based on her context can be obtained by exploiting symbolic
reasoning without the need of any training data. Besides, statistical inferencing
can be performed based on raw data retrieved from body-worn sensors (e.g.,
accelerometers) without the need to acquire them under different context condi-
tions during the training phase; indeed, given a performed activity, these data are
mainly independent from the user’s context. Hence, by coupling symbolic rea-
soning with statistical inferencing it is possible to perform activity recognition
using a comprehensive set of information in a sufficiently scalable way.

In particular, our technique consists in the use of semantic relationships and
constraints to express the feasibility of performing a given activity in a given
context. For this reason we have defined an ontology that models activities, arti-
facts, persons, communication routes, and symbolic locations, and that expresses
relations and constraints between these entities. To the best of our knowledge
this is the first work that systematically investigates the integration of statis-
tical and ontological reasoning for activity recognition. Extensive experimental
results with data collected by volunteers show the superiority of the proposed
technique with respect to a solely statistical approach.

The rest of the paper is organized as follows: Section 2 presents an overview
of the proposed activity recognition system; Section 3 illustrates the technique
for combining ontological reasoning and statistical activity recognition; Section 4
presents experimental results; Section 5 concludes the paper.
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Fig. 1. The COSAR system

2 The COSAR activity recognition system

The proposed activity recognition system is graphically depicted in Figure 1.
The lower layer (sensors) includes body-worn sensors (providing data such as
accelerometer readings and physiological parameters) and sensors spread in the
environment.

Data provided by environmental and body-worn sensors are communicated
through a wireless connection to the user mobile device, and merged with
sensor data retrieved by the device itself (e.g., data provided by an embedded
accelerometer) to build a feature vector that will be used to predict the user’s
activity. The device also continuously keeps track of the current physical loca-
tion provided by a GPS receiver. When the GPS reading is not available or
not sufficiently accurate (e.g., indoor), localization is performed by an external
location server (e.g., a GSM triangulation system provided by the network
operator, or an RFID system). The gis module is in charge of mapping the phys-
ical location reading to the most specific symbolic location that correspond to
that physical location. This information will be used by the Combined Onto-
logical/Statistical Activity Recognition module (cosar) to refine the
statistical predictions.

The infrastructure layer includes a pattern recognition module that
is in charge of deriving a statistical model of the considered activities, which
is communicated offline to the cosar module. This layer is also in charge of
performing ontological reasoning to calculate the set of activities that can be
potentially performed in a given context. This set is also communicated offline
to the cosar module. In addition, the infrastructure layer includes a network
provider offering the connectivity necessary to exchange data between modules
at different layers, and, in particular, to communicate activity information to re-
mote data centers or context-aware service providers. With respect to efficiency
issues, we point out that the most computationally expensive tasks (i.e., ontolog-



ical reasoning and pattern recognition to build a statistical model of activities)
are executed offline. Note that privacy issues are of paramount importance in
this domain; however, their treatment is outside the scope of this paper. Prelim-
inary work on integrating privacy preservation in a context-aware middleware
can be found in [13].

3 Combining ontological reasoning and statistical activity
recognition

In this section we illustrate how ontological reasoning is coupled with statistical
inferencing in order to recognize the user’s activity.

3.1 Statistical activity recognition with a temporal voted variant

As illustrated in the introduction, the most common approach to activity recog-
nition is to make use of supervised statistical learning methods. Roughly speak-
ing, these methods rely on a set of preclassified activity instances that are used
in a training phase to learn a statistical model of a given set of activities. The
obtained model is then used to automatically classify new activity instances.

Activity instances are characterized by a duration; i.e., the temporal reso-
lution at which activity instances are considered. Each activity instance is rep-
resented by means of a feature vector, in which each feature corresponds to a
given measure (typically, a statistics about some measurements retrieved from
a sensor or from a set of sensors during the duration of the activity instance).

Even if significant exceptions exist (e.g., Hidden Markov Models and Linear
Dynamical Systems [14]), it is worth to note that most models adopted by sta-
tistical learning algorithms implicitly assume independence between each pair of
instances to be classified. As a consequence, the prediction of an instance i2 does
not depend on the prediction of another instance i1. However, when considering
activity instances the above-mentioned assumption does not hold. In fact, per-
sons do not continuously switch among different activities; instead, they tend to
perform the same activity for a certain lapse of time before changing activity.
Similarly to other approaches in the literature, we exploit this characteristic to
improve the classification result of statistical activity recognition systems by in-
troducing a voted variant. Since a thorough description of this variant is outside
the scope of this paper, we only mention that it is based on a time window to
classify each activity instance considering some of the previous activity instances;
this technique can be applied to a large class of statistical learning algorithms.

3.2 Ontological reasoning to identify potential activities based on
context

Even if our technique can be applied to any kind of context data, in the rest
of this paper we concentrate on location information. Indeed, location is an
important case of context information, and the current symbolic location of a
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Fig. 2. The COSAR-ONT ontology

user can give useful hints about which activities she can or cannot perform.
Moreover, from a practical perspective, localization technologies are more and
more integrated in mobile devices and buildings; hence, differently from other
context data, location information is available in many situations.

Rationale. Even if in theory the set of possible activities that can be performed
in a given symbolic location could be manually specified by a domain expert,
this method would be clearly impractical. Indeed, even considering a few tens
of activities and symbolic locations, the number of their combinations would
quickly render this task unmanageable. Moreover, this task should be repeated
each time the characteristics of a symbolic location change (e.g., when an artifact
is added to or removed from a room).

Our solution is based on the use of an OWL-DL [15] ontology to represent
activities, symbolic locations, communication routes, artifacts, persons and time
granularities, as well as relations among them. To this aim we have developed
a novel ontology, named COSAR-ONT, whose main classes and properties are
graphically depicted in Figure 2(a). Figure 2(b) shows the number of descen-
dants of the main classes of the ontology. In particular, COSAR-ONT includes
30 symbolic locations and 35 activities. Figure 3 shows part of the activities
modeled by our ontology; the rightmost activities in the figure are those used in
the experimental evaluation of our system (Section 4). The set of locations and
activities in our ontology is obviously non exhaustive; however, we believe that
this ontology can be profitably used to model many health care scenarios. More-
over, the ontology is easily extensible to address additional application domains.
In order to illustrate our technique we introduce the following example.

Example 2. Consider the activity BrushingTeeth, and the task of automatically infer-
ring the set of symbolic locations in which such activity can reasonably be performed.
One possible definition of the considered activity is the following:

BrushingTeeth v PersonalActivity u ∀ performedIn. ( ∃ hasArtifact.Sink ) u . . .



Fig. 3. Part of the COSAR-ONT activities

According to the above definition, BrushingTeeth is a subclass of PersonalActivity
that can be performed only in locations that contain a Sink (that is defined as a subclass
of WaterFixture); other restrictions may follow, but they are not considered here for
simplicity. Now consider two symbolic locations, namely RestRoom and LivingRoom,
defined as follows:

RestRoom v Room u ∃ hasArtifact.Sink u . . .

LivingRoom v Room u ¬∃ hasArtifact.WaterFixture u . . .

According to the above definitions, RestRoom is a Room that contains a sink, while
LivingRoom is a Room that does not contain any WaterFixture (once again, other details
about the definition of these classes are omitted)1. Given those ontological definitions
it is possible to automatically derive through ontological reasoning the set of symbolic
locations in which the activity BrushingTeeth can be performed. To this aim, the
following assertions are stated and added to the assertional part of the ontology (called
ABox ):

BrushingTeeth(CURR ACT); RestRoom(CURR LOC 1); LivingRoom(CURR LOC 2)

The above assertions create an instance of activity BrushingTeeth identified as CURR -

ACT, an instance of location RestRoom identified as CURR LOC 1, and an instance of
location LivingRoom identified as CURR LOC 2. Then, in order to understand if a given

1 Note that, due to the open-world assumption of description logic systems [16] and,
consequently, of OWL-DL, it is necessary to explicitly state those artifacts that are
not present in a given location. This is simplified by considering in the definition of
symbolic locations only artifacts that characterize the activities to be discriminated
and using the artifact ontology to exclude whole classes of artifacts, as done in the
LivingRoom example with WaterFixture.



activity instance a can be performed in a given location l it is sufficient to add an
assertion to the ABox stating that activity a is performed in location l, and then to
check if the ABox is consistent with respect to the terminological part of the ontology
by performing a consistency checking reasoning task:

performedIn(CURR ACT,CURR LOC 1); isABoxConsistent()

The above statements are used to verify if activity BrushingTeeth can be performed
in location RestRoom. In this case the consistency check succeeds, since the declared
constraints on the execution of BrushingTeeth (i.e., the presence of a sink) are satisfied
by the considered location. The same statements, substituting CURR LOC 1 with CURR -

LOC 2 verify if activity BrushingTeeth can be performed in location LivingRoom. In
this case the consistency check does not succeed, since the definition of LivingRoom

states that no WaterFixture is present in that location. As a consequence, since Sink

has been defined as a subclass of WaterFixture, the ontological reasoner infers that
no sink is present in LivingRoom, thus violating the constraints for the execution of
activity BrushingTeeth.

Algorithm for the Derivation of Possible Activities (DPA). The DPA
algorithm takes as input an empty ABox and the terminological part of the
ontology (called TBox) that describes classes and their properties. The output
of the algorithm is a matrix M whose rows correspond to symbolic locations in
the TBox, columns correspond to activities in the TBox, and Mi,j equals to 1 if
activity corresponding to column j is a possible activity in location corresponding
to row i according to the TBox; Mi,j equals to 0 otherwise.

As a first step, the terminological part of the ontology is classified to compute
the hierarchy of the atomic concepts of the TBox. Then for each pair 〈li, aj〉,
where li is a symbolic location and aj is an activity in TBox, the algorithm cre-
ates three assertions s1 = “aj(A)”, s2 = “li(L)”, and s3 = “performedIn(A,L)”
to state that activity aj is performed in location li, and adds them to the ABox.
Then, the ABox is checked for consistency, and Mi,j is set with the result of
the test (1 if the check succeeds, 0 otherwise). Finally, assertions s1, s2 and s3

are retracted from the ABox in order to remove the possible inconsistency that
would affect the result of future consistency checks.

An example of the output of the DPA algorithm with a subset of locations
and activities modeled by COSAR-ONT is given in Table 1.

3.3 Coupling ontological reasoning with statistical inferencing

Rationale. We illustrate our technique by means of an example.

Example 3. Suppose that user Alice is taking a stroll on a path that goes across the
wood near home wearing the sensor equipment of the monitoring system. As explained
before, the system (deployed on her mobile phone) continuously keeps track of her
current activity, as well as of her current symbolic location (that in this case is Wood).
The system also knows the matrix M that was calculated offline by the DPA algorithm.

Considering a single activity instance i and the statistical model of m different ac-
tivities a1, . . . , am, the statistical classifier of the system returns a m-length confidence



1 2 3 4 5 6 7 8 9 10

Garden 0 0 0 1 1 1 1 0 0 0
HospitalBuilding 1 0 0 0 0 1 0 1 1 1
Kitchen 1 0 0 0 0 1 0 0 0 1
Laboratory 0 0 0 0 0 1 0 0 0 1
LivingRoom 0 0 0 0 0 1 0 0 0 0
Meadow 0 0 0 1 1 1 1 0 0 0
RestRoom 1 0 0 0 0 1 0 0 0 0
UrbanArea 0 0 0 1 1 1 1 1 1 0
Wood 0 1 1 1 1 1 1 0 0 0

Columns: 1=brushingTeeth; 2=hikingUp; 3=hikingDown; 4=ridingBycicle; 5=jogging;

6=standingStill; 7=strolling; 8=walkingDownstairs; 9=walkingUpstairs;

10=writingOnBlackboard

Table 1. Part of the M matrix of potential activities

vector −→s i in which the jth element −→s (j)
i corresponds to activity aj and its value corre-

sponds to the confidence of the classifier regarding the association of i to aj , such that

0 ≤ −→s (j)
i ≤ 1 and

m∑
j=1

(−→s (j)) = 1. For instance, suppose that the considered activities

are those shown in Table 1 (the jth column of the table corresponds to activity aj), and
that −→s i = 〈0, 0, 0.16, 0, 0, 0, 0.39, 0.45, 0, 0〉. In this case, the maximum confidence value
(0.45) corresponds to activity WalkingDownstairs, followed by Strolling (0.39) and
hikingDown (0.16). The confidence value corresponding to the other seven activities is
0. Hence, considering the statistical prediction alone, the classifier would erroneously
conclude that user Alice is walking downstairs.

However, looking at matrix M one can note that WalkingDownstairs is not a
feasible activity in the current location of Alice. The rationale of the COSAR tech-
nique is to discard those elements of −→s i that correspond to unfeasible activities ac-
cording to M , and to choose the activity having maximum confidence among the re-
maining elements (or one such activity at random if the maximum confidence cor-
responds to more than one activity). In this case, the COSAR technique consists
in discarding activities BrushingTeeth, WalkingDownstairs, WalkingUpstairs and
WritingOnBlackboard, and in choosing activity Strolling, since it is the one that
corresponds to the maximum confidence among the remaining activities. Hence, in this
case the COSAR technique correctly recognizes Alice’s activity.

Handling location uncertainty. Every localization technology is character-
ized by a certain level of inaccuracy. As a consequence, the mapping of a physical
location reading to a symbolic location is prone to uncertainty. For instance, if
the physical location is retrieved from a GSM cell identification system, the area
including the user may correspond to different symbolic locations, such as a
HomeBuilding, a HospitalBuilding and a Park.

Uncertainty in location is taken into account by our system. In particu-
lar, if the user’s physical location corresponds to n possible symbolic locations
l1, . . . , ln, the possible activities that can be performed by the user are calculated
as those that can be performed in at least one location belonging to {l1, . . . , ln}.



Example 4. Suppose that Alice forgot her GPS receiver at home. Consequently she
relies on a GSM cell identification service, which provides coarse-grained location in-
formation. In particular, the service localizes Alice within an area that includes both a
Wood and a UrbanArea. Hence, our system calculates the set of Alice’s possible activities
as the union of the set of activities that can be performed in woods and the set of activ-
ities that can be performed in urban areas. Considering matrix M derived by the DPA
algorithm and shown in Table 1, possible activities for Alice are those that correspond
to columns 2 to 9, included. Therefore, with respect to the scenario depicted in Ex-
ample 3, in this case WalkingDownstairs and WalkingUpstairs are possible activities
(since urban areas may include steps).

The COSAR-voted algorithm. At first, the vector of predictions −→C
′

is ini-
tialized. Then, the process of actual activity recognition starts. For each activity
instance to be recognized, the location server is queried to obtain the sym-
bolic location corresponding to the current physical location −→l i of the user.
Note that, if the location server provides location information at a coarse grain,
more than one symbolic location can correspond to the user’s physical location.
Then, sensor data are retrieved from sensors and a feature vector fi is build by
the sensor data fusion module. The feature vector is used to classify the cor-
responding activity instance according to the statistical model provided by the
pattern recognition module, obtaining a confidence vector −→s i. According to
−→s i, to the possible symbolic locations −→l i, and to the matrix M obtained by the
DPA algorithm, the combined ontological-statistical prediction ci is calculated;
as explained before, ci is the possible activity according to M having highest
confidence in −→s i. Finally, the voted variant is applied to obtain the voted pre-
diction c′i considering ci and the bag of (non-voted) predictions {ci−1, . . . , ci−k}
of the k most recently classified activity instances. In particular, c′i is set to the
prediction having the maximum multiplicity in {ci, ci−1, . . . , ci−k}. If multiple
predictions exist which have the maximum multiplicity, one of them is chosen at
random. Then, prediction c′i is added to the vector of predictions −→C

′
.

4 Experimental evaluation

In order to validate our solution we performed an extensive experimental evalu-
ation comparing our technique with a purely statistical one. We point out that
the symbolic location is used as a feature only in the experiments performed
with the purely statistical technique (named statistical and statistical-voted in
the following). In the experiments with the COSAR technique (named COSAR
and COSAR-voted) location is not used as a feature by the statistical classifier;
instead, it is used by the ontological module only.

4.1 Experimental setup

The experiments concerned the recognition of 10 different activities performed
both indoor and outdoor by 6 volunteers (3 men and 3 women, ages ranging



Fig. 4. Sensors used for the experiments

from 30 to 60) having different attitude to physical activities. While performing
activities, volunteers wore one sensor on their left pocket and one sensor on
their right wrist to collect accelerometer data, plus a GPS receiver to track
their current physical location. This setup reproduces the situation in which
data are acquired from an accelerometer embedded in a fitness watch, and from
an accelerometer and a GPS receiver embedded in a mobile phone. Since in the
current implementation of our system the gis module is only simulated, physical
locations were manually mapped to symbolic locations.

Each activity was performed by 4 different volunteers for 450 seconds each.
Overall, each activity was performed for 30 minutes; hence, the dataset is com-
posed of 5 hours of activity data. The dataset is published on the web site of our
project2 and can be freely used to reproduce the experiments, or as a testbed
for evaluating other techniques.

Accelerometer data were retrieved using Small Programmable Object Tech-
nology (SPOT) by Sun R© Microsystems. SPOTs (shown in Figure 4 together
with the used GPS receiver) are sensor devices programmable in Java Micro
Edition; they are equipped with a 180 MHz 32 bit processor, 512K RAM/4M
Flash memory, and IEEE 802.15.4 radio with integrated antenna. They mount
a 3-axis accelerometer, and sensors for light intensity and temperature.

Samples from accelerometers were taken at 16Hz, and the time extent of each
activity instance was 1 second; hence, the dataset is composed of 18000 activity
instances. For each activity instance, accelerometer readings were merged to
build a feature vector composed of 148 features, including means, variances,
correlations, kurtosis, and other statistical measures. Preliminary experiments
(not reported here for lack of space) suggest that in our case feature selection
does not improve classification accuracy; however, feature selection can still be
useful to reduce CPU usage at run time, hence we will consider this issue in
future work.

Statistical classification was performed using Weka3, a Java-based toolkit
that provides APIs for implementing several machine learning algorithms. The

2 http://everywarelab.dico.unimi.it/palspot
3 http://www.cs.waikato.ac.nz/ml/weka/



(a) Evaluation of statistical classifiers

Classifier Accuracy

Bayesian Network 72.95%
C4.5 Decision Tree 66.23%
Multiclass Logistic Regression 80.21%
Naive Bayes 68.55%
SVM 71.81%

(b) Overall accuracy

Classifier Accuracy

statistical 80.21%
statistical-voted 84.72%
COSAR 89.20%
COSAR-voted 93.44%

(c) Error reduction

versus → statistical statistical-voted COSAR

statistical-voted 22.79%
COSAR 45.43% 29.32%

COSAR-voted 66.85% 57.07% 39.26%

Table 2. Summary of experimental results

COSAR ontology was developed using Protégé4, while RacerPro5 was used to
perform ontological reasoning. Since the sensor devices we used lacked a Blue-
tooth interface we could not establish a direct connection between a mobile
device and the sensor devices themselves. For this reason experiments were exe-
cuted on a desktop workstation. However, at the time of writing we are working
on the implementation of the COSAR-voted algorithm for devices supporting
Java Micro Edition.

In order to evaluate recognition rates we performed 4-folds cross validation,
dividing the dataset in 4 subsamples such that each subsample contains 450
instances for each activity. Ideally, an out-of-the-box activity recognition system
should be able to recognize one person’s activities without the need of being
trained on that person. Hence, in order to avoid the use of activity data of
the same user for both training and testing we ensured that activity instances
regarding a given volunteer did not appear in more that one subsample.

4.2 Results

Exp. 1) Statistical classification algorithms: The first set of experiments was
only aimed at choosing a statistical classification algorithm to be used in the
subsequent experiments. In general, since in many applications activity recogni-
tion must be performed on-line, the choice of a classification algorithm should
privilege not only good recognition performance, but also very efficient classi-
fication procedures. Indeed, in many cases, the activity recognition algorithm
must be executed on a resource-constrained mobile device.

In this first experiment we compared classification techniques belonging to
different classes of pattern recognition algorithms (i.e., Bayesian approaches,
decision trees, probabilistic discriminative models and kernel machines). Exper-
imental results on our data (shown in Table 1(a)) show that, among the consid-
ered techniques, Multiclass Logistic Regression with a ridge estimator (MLR),
4 http://protege.stanford.edu/
5 http://www.racer-systems.com/



(a) Confusion matrix

classified as → 1 2 3 4 5 6 7 8 9 10

1 1336 4 1 11 8 304 0 33 2 101
2 4 1551 219 5 14 0 1 1 5 0
3 0 382 1376 4 3 1 31 2 1 0
4 1 5 10 1738 23 0 0 23 0 0
5 13 3 17 21 1664 1 7 73 1 0
6 32 5 3 0 290 1254 17 34 126 39
7 0 0 78 0 304 3 917 383 115 0
8 0 0 1 0 0 0 2 1762 35 0
9 0 5 0 4 0 1 16 144 1629 1

10 14 61 1 16 7 485 0 1 5 1210

(b) Precision /
recall
prec. recall

95,43% 74,22%
76,93% 86,17%
80,66% 76,44%
96,61% 96,56%
71,94% 92,44%
61,20% 69,67%
92,53% 50,94%
71,74% 97,89%
84,89% 90,50%
89,56% 67,22%

Columns: 1=brushingTeeth; 2=hikingUp; 3=hikingDown; 4=ridingBycicle;

5=jogging; 6=standingStill; 7=strolling; 8=walkingDownstairs; 9=walkingUpstairs;

10=writingOnBlackboard

Table 3. Results for the statistical classifier

(a) Confusion matrix

classified as → 1 2 3 4 5 6 7 8 9 10

1 1622 0 0 0 0 178 0 0 0 0
2 0 1443 171 19 34 14 119 0 0 0
3 0 268 1284 22 2 13 211 0 0 0
4 0 4 7 1787 1 1 0 0 0 0
5 0 0 0 134 1640 9 6 8 3 0
6 0 3 0 26 9 1738 21 1 2 0
7 0 0 0 69 9 54 1597 67 4 0
8 4 0 0 0 0 1 0 1753 42 0
9 24 0 0 0 0 26 0 107 1643 0

10 0 0 0 0 0 251 0 0 0 1549

(b) Precision /
recall
prec. recall

98,30% 90,11%
83,99% 80,17%
87,82% 71,33%
86,87% 99,28%
96,76% 91,11%
76,06% 96,56%
81,73% 88,72%
90,55% 97,39%
96,99% 91,28%
100,00% 86,06%

Columns: 1=brushingTeeth; 2=hikingUp; 3=hikingDown; 4=ridingBycicle;

5=jogging; 6=standingStill; 7=strolling; 8=walkingDownstairs; 9=walkingUpstairs;

10=writingOnBlackboard

Table 4. Results for the COSAR classifier

outperform the other techniques, gaining recognition rates higher than 80%.
Hence, our choice for the statistical classification algorithm was to use MLR [17],
a classification technique belonging to the class of probabilistic discriminative
models [14], having the advantage of being particularly computationally efficient
at classification time.

Exp. 2) Statistical technique: Table 3 shows the confusion matrix and pre-
cision/recall measures for the statistical technique evaluated in the first set of
experiments. As expected, when data from accelerometers are used and the sym-
bolic location is used as a feature, many misclassifications occur between activ-
ities that involve similar body movements; e.g., instances of strolling are often
classified as instances of walking downstairs.

Exp. 3) Statistical-voted technique: We evaluated the voted variant of the
statistical classification algorithm by simulating the case in which a user performs
each activity for 7.5 minutes before changing activity. With this technique, the



accuracy of activity recognition is 84.72% (see Table 1(b)), which results in
an error reduction rate of 22.79% with respect to the statistical technique (see
Table 1(c)). Due to lack of space we do not report the confusion matrix and
precision/recall measures for this experiment; however, this technique does not
significantly reduce the number of misclassifications between activities involving
similar movements.

Exp. 4) COSAR technique: The use of the COSAR technique considerably
improves the recognition rate with respect to the solely statistical techniques.
In particular, the recognition rate of COSAR is 89.2%, which results in an error
reduction of 45.43% with respect to the statistical technique, and of 29.32%
with respect to the statistical-voted technique. Looking at the confusion matrix
(Table 4), we note that COSAR avoids many misclassifications between activities
characterized by similar body movements but different locations in which they
are typically performed (e.g., brushing teeth versus writing on a blackboard, and
strolling versus walking up/downstairs).

Exp. 5) COSAR-voted technique: Finally, the voted variant of COSAR (eval-
uated with the same setup as in Exp. 3 ) further improves classification results,
gaining a recognition rate of 93.44%, an error reduction of 39.26% with respect
to the COSAR technique, and of 66.85% with respect to the statistical technique.

5 Conclusions and future work

In this paper we proposed the integration of statistical and ontological reasoning
for activity recognition. Our technique relies on modeling context data in ontolo-
gies and using derived semantic relationships expressing the feasibility of per-
forming a given activity in a given context. Results from extensive experiments
with data acquired by volunteers confirm the effectiveness of our technique.

Even if in the current implementation of our system we focused on location
data to enact ontological reasoning, our technique can be easily extended to
consider a wider class of context data. In particular, future work includes an ex-
tension of our technique to consider the temporal characterization of activities
(e.g., duration), as well as their temporal relationships (i.e., the probability that
a given activity ai is followed by an activity aj). To this aim we plan to design a
temporal extension of our ontology, and to investigate the use of a probabilistic
framework such as Hidden Markov Models. Moreover, since in many situations
available context data may be insufficient to unambiguously determine the ac-
tivity performed by a user, we are investigating the use of fuzzy ontologies to
cope with uncertainty and fuzziness.
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