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Abstract—The anonymization of location based queries
thr ough the generalization of spatio-temporal information has
beenproposedasa privacy presewring technique.We show that
the presenceof multiple concurrent requests,the repetition of
similar requestsby the sameissuers, and the distrib ution of
different sewice parameters in the requestscan signi cantly
affect the level of privacy obtained by current anonymity-
basedtechniques. We provide a formal model of the privacy
thr eat, and we proposean incremental defensetechnique based
on a combination of anonymity and obfuscation. We showv
the effectivenessof this technique by means of an extensie
experimental evaluation.

I. INTRODUCTION

Location basedservices(LBS) are Internetservicesthat
provide information or enablecommunicatiorbasedon the
locationof usersand/orresourcest speci ¢ times.They are
often designedto answerspatio-temporahearest-neighbor
or rangequeriesissuedfrom mobile devices, taking asone
of the parameterghe currentlocation asidenti ed through
positioningtechnologiedike GPS, cell tower triangulation,
or WiFi positioning. Several commercialLBS like assisted
car navigation, friend- nder, and proximity marketing are
currently available. The successand popularity of these
serviceswill partly dependupon the privacy preserving
technologiesthat will be designedand offered to nal
users. Indeed, comparedwith privacy issuesin database
publication, the spatio-temporalinformation containedin
eachuserrequest,and the recurrenceof requestsin time,
forces the considerationof new privacgy threatsand the
designof speci ¢ defensetechniques.

The generalprivacy threatconsistsin the acquisitionby
an adwersary of the associationbetweenan individual's
identity andher privateinformation.In somecases|ocation
at a speci c time, as includedin a request,is considered
private; in other casesthe serviceinvoked or the specic
parametersare consideredprivate, and location and time
may be usedby the adwersaryto re-identify the issuer The
actualthreatsdo not dependonly on the natureof private
information;a carefulspeci cationof theadwersarymodelin
termsof which requestse may acquire,andwhich external
knowledgehe may have accesgo, is a preconditionto the
identi cation of the privagy threats,and to the design of
defensetechniques.In this paperwe illustrate a privacy
threatin LBS dueto the ability of the adwersaryto acquire
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requestsssuedby multiple usersjn thesametime granuleas
well asin differenttime granules An exampleis illustrated
in Sectionll along with the speci cation of the adwersary
model. In particular we shov that even if eachrequest
has beenanorymized with stateof the art techniquesthe
adwersarycanstill associatgrivateinformationwith speci ¢
individuals with a high probability. The attackis basedon
the obsenation that userstend to issueLBS requestswith
parametersn uenced by their personalpro le, including
personaldata like nationality age, gender and more im-
portantly their interests.While pro le datacan evolve in
time, it is a rather slow processand this is re ected in
the persistenceof the sameor similar service parameters
in a subsetof the requestdssuedat differenttimesby each
user We illustrate a speci ¢ methodan adwersarycan use
to update,upon observingthe requestdssuedat eachtime
granule,his knowledgeaboutthe probability of eachuserto
be associatedo certainserviceparametersThis knowledge
re nement, coupled with the ability of an adwersary to
restrictthe setof potentialissuersof eachrequestbasedon
locationinformation as usedin previous work [1], [2], [3],
leadsto adangerougrivacy threatnot previously recognized
in the literature.

Related work can be divided in two main streams.
Obfuscation-basedefensesaim at obfuscatingthe private
information in each requestso that even if the issueris
identi ed, theadwersarycannotrecognizehe speci c private
valuesassociatedvith the original issuers request.These
techniqueshave beenmostly appliedin the caselocation
andtime areconsideredrivate,asin [4]. Anonymity-based
defensesim at preservingthe anorymity of the issuersso
thatan adwersaryis not ableto associaterivateinformation
presentin the requestswith a specic individual. The
defensegransformthe so-calledquasi-identi erinformation
in requestsso that the issuerbecomesndistinguishablein
a sufciently large group of users(called anonymitysej).
Usually, service parametersare consideredthe datato be
protected,and location information is considereda quasi-
identi er, sincethe adwersarymay obtain information from
externalsourcesboutthe presencef aspeci ¢ individualin
the locationfrom which the requestwasissued. A common
techniqueis the generalizatiorof the locationto an areain
orderto includeat leastk potentialissuershatbecomepart
of theanorymity set,enforcingk-anorymity. Most proposed



techniqueshave consideredanorymization of requestsin
isolation, i.e., ignoring the possibility of the adwersaryto
correlaterequestsat differenttimes([1], [2], [3], [5], aswell
asrequestsby differentusers.Only a few approachegon-
siderthe threatsinvolvedin dynamicallyacquiringrequests
(often called historical attacs), aswe do in this paper;the
threatsinvolved in the recognitionof tracesof requestsy
the same(anorymous)issuerhave beenconsideredn [6],
[7], [8], [9] and defenseshave beenproposed.Tracesare
supposedo be recognizedby comparingpseudo-identi ers
in request®r by spatio-temporaleasoningOur work differs
in two aspects:a) the threat we consideroccurs even if
no traceis recognized,b) we considerthe effects on the
compositionof anorymity setsdue to concurrentrequests
by multiple userswith the samerequestparameters.To
our knowledge this last aspecthas been ignored in all
previouswork in LBS privacy exceptin a preliminarywork
of ours [10], and in a more recent paper[11], and has
close relationshipwith the diversity problemidenti ed in
databasepublication[12]. Finally, we should mentionthat
techniqueshasedon private information retrieval have also
been proposedfor LBS [13] and they may be applied
both for obfuscationand anorymity, since exchangeddata
is encrypted;however, their practical applicability seems
limited both in terms of supportedqueries,and in terms
of computationakosts.

The contributions of this papercan be summarizedas
follows: (i) We formalizea previously unrecognizegrivacy
threatin LBS dueto correlationbetweenconcurrentrequest
by multiple users,as well as to incrementalre nement
of adwersarial knowledge along the service history; (ii)
We proposea novel defensetechniqueprotectingfrom the
identi ed threat;(iii) We presentan experimentalevaluation
in a pro le-basedproximity marketing scenario.

In Sectionll we formalizethe adwersarymodelandillus-
tratethe threatwith an example.In Sectionlll we formally
de ne the adwersarialinferencemethod.In SectionlV we
proposea defensdaechniquethatis experimentallyevaluated
in SectionV. SectionVI concludeghe paper

Il. ADVERSARY'S MODEL AND MOTIVATING EXAMPLE

As in several related works, our referencescenarioin-
cludesa trustedsener (LTS which is aware of the actual
location of users.This assumptionis not far from reality,
since most of us rely on a mobile operator for mobile
communicationsthatis aware of our approximateposition.
The LTS actsasa proxy, by Itering andgeneralizingeach
users requestbeforeit is forwardedto the serviceprovider
(SP) which is considereduntrusted.Each service request
r is logically divided into three parts: | Ddata, STdata,
and SSdata, containing user identi cation data, location
and time of request,and service parametersrespectely.
We refer to the set of possiblevaluesof SSdataas =
f#1;:::;#,0, and we assumethat  can be represented
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Figurel. Motivating example

as a taxonomy The LTS transformseachrequestr into a
requestr®, by droppingl D data and generalizingthe value
of STdata, and possibly of SSdata too. The adwersarys
model consideredin this paperis basedon the following
contt assumptions

The generalizationalgorithm adoptedby the LTS is
publicly known;

We assumehatthe LTS works at a giventime granular
ity, so that at eachtime-granulea group of generalized
requestsis forwardedto the SP We assumethat only
onerequesipertime granulecanbe issuedby eachuser

Theadwersarymayobtainthegeneralizedequestsssued
in one or more time granules.We refer to this context
assumptiorasCy 4 (Multiple-issuerHistorical case).

The adwersary may obsere or obtain from external
sourcesthe position of specic individuals at given
times.As in relatedwork, we make a worstcaseassump-
tion Cst that considerscompletelocation knowledge
aboutpotentialissuers.

Correlation of requestsat different time granulescan
only be doneby analyzingSSdata In principle, traces
of requestsmade by the sameindividual can also be
recognizedon the basis of spatio-temporalreasoning
or pseudo-identi ersincludedin requestsHowever, al-
gorithms to deal with this case have been previously
proposed9], and canbe seamlesslyntegratedwith the
one proposedn this paper

Note thatin this work we assumehat the adwersaryhas
no speci ¢ prior knowledge aboutthe associatiorbetween
individuals and sensitve service parameters(e.g., “Alice
is interestedin vegetarianrestaurants”).Hence, his prior
knowledg is modeledaccordingto the following de nition.

De nition 1 (PRIOR KNOWLEDGE). Theprior knowledg of
the advessaryis a functionK ,; : U ! in which U is the
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setof uses, pp=1g@©O p 1)
1 i n

is the set of possibleprobability distributions of valueson

the sensitiveattribute SSdataand for all usesin U, =

After observinggeneralizedequestdssuedat time gran-
ule TG (andpossiblyalsoin time granulesprecedingT G)
the adwersarymay computehis posterior knowledg, which
is modeledaccordingto the following de nition.

De nition 2 (POSTERIOR KNOWLEDGE). The posterior

knowled@ of the advesaryis a functionK pos : U T G!
inwhich U is thesetof yges, T Gis a setof timegranules,

and pi=1g (O pi 1) is

1in
the set of possible probability distributions of valueson
the sensitiveattribute SSdatacomputedafter observingthe
requestsssuedin TG and in previoustime granules.

Note that the above de nition is very general.An infer-
ence methodto actually computethe posteriorknowledge
Kpos is presentedin Sectionlll. On the basis of K s,
the goal of the adwersaryis to reconstructthe association
betweena user u and the sensitve service parameter#
included in her requestissuedat TG. For instance,by
observingthat,accordingio K pos(u; T G), the probability of
# for u is considerablyhigherthanthe onefor otherusersin
U, theadwersarymayconcludethatu issuedarequesthaving
privatevalue#. Variouspro le-basedproximity servicesare
proneto this kind of privagy threats.The following example
considergsthe caseof a proximity marketing service.

Example 1. Considera proximity marketing service that
proactively provides location-awae advertisementsabout
sales on items belongingto a set of interest categories.
Ead registered userperiodically communicateser current
location to the serviceprovider in order to receiveadver
tisementsHowever, sincethe serviceprovider is untrusted,
uses communicatdo the serviceonly part of their interest
catggories, while they do not report the ones involving
sensitiveinformationsuc as healthstatus,religiousbeliefs,
and political af liations. However, advertisementsegarding
the latter categoriescan be obtainedon-demandy issuing
anonymousjueriesin which the user's location is generl-
ized by the LTS, and containingthe category of interest(a

Supposehat during TGy a user Alice issuesa request
for salesregarding items of category #;. By joining loca-
tion information in requestsissuedat TG; with the one
communicatedby its uses, the advesary identi es two
anonymitysetsA; and A, (correspondingo uses depicted
in Figure 1(a)), both having cardinality 5. In our example
two of the threerequestsssuedfromusesin A; (including
Alice) askfor #; and onefor #,. Hence the advesary can
infer that the probability that Alice issueda requestfor #;

is 2, while it is £ for #,. Next, supposethat the advesary
can observealso requestsissuedat TG», including the
oneissuedby Alice for #;. Onceagain, the advesary can
recaynize two anonymitysetsAs and A4 of cardinality 5,
correspondingo the uses depictedin Figure 1(b). During
thelapseof timebetweerl G; and T G, uses havechanged
their positions.Wth regard to Alice's anonymitysetA4, the
advesary can observethat the set of requestsissuedby
uses in A4 is composedf a single requesthaving private
value #;. Consequentlythe advesary can notice that the
presencef Alice in a givenanonymitysetis correlatedwith
a frequencyof the private value #; that is higher than the
average frequencyof the samevalue in the whole set of
requestsHence he canconcludethat probablyAlice issued
requestdor #;.

I1l. DERIVING POSTERIOR KNOWLEDGE

In this section we formally model the derivation of
posteriorknowledgein the historical multiple-issuerscase.
The following notationis necessary:

Ac (r9 is the anorymity setof potentialissuersof re-
questr%identi ed onthebasisof r® andof context C. For
instancejf r@is therequesissuedby Alice during TG,
(Examplel), Ac (r9 = fAlice, Bea, Carl, Dan, Ericg.

guestsissuedby usersin anorymity setA; in particulay
8r%;r 2 R(A) r{:STdata = r9:STdata. For
instancejf A is the anorymity setidenti ed above (i.e.,
A = Ac(r9), R(A) is the set composedof requests
issuedby Alice, Beaand Carl during TG;.

includedin the set R of generalizedrequests.For in-
stancejf R is the setof requestddenti ed above (i.e.,
R=R(A)), ( R) = f#1;#20

Mgr IS the numberof requestsn R which includethe
SSdata#; this valueis calledthe multiplicity of # in R.
For instancejf R = R(A) asabove, the multiplicity of
#1iNRismyg.r = 2

Given posterior knowledge Kpos(u; TG) =
(p1;:::;pn), Wwe denote by KF(,'O)S(U;TG) the
probability associated to the i-th sensitve

value, i.e., KF()IO)S(U;TG) =P

Kpri(U) = (Prs:::5pn), K5 (U) = pi.

Intuitively, the probability that a useru issuedone of the
requestsat time TG, with parameter# is in uenced by
the frequeng of obsenration of the sameparameteiin the
requestdn R(A) for eachanorymity setA including u at

Similarly, given

probablethatu issueda requestvith paramete#. However,
in most casesthe cardinality of R(A) is smallerthan the
cardinality of A, since service usersdo not continuously
issuerequestsTherefore,whenthe adwersarycomputeshis



posterior knowledge basedon requestsissuedin a given
TG, he must considerthe possibility that the userdid not
issuerequestdn TG. The following de nition modelsthe
adwersarys inferencemethodunder€ = Cy .+ st.

De nition 3 (INFERENCE METHOD). Giventhe context €,

K $0s(U; TGm 1) if @2R:u2Ag(r)

pi =

i+ (1) KU TG 1) otherwise

) ) My. -
whee K{s(u;TGo) = Kr(,'r)i(u), P = #j"TRj(A)
= R(TA)J and A is the anonymity set the user u

1A
belongsto (if sud anonymitysetexists).

Intuitively, if useru doesnot belongto any anorymity
setat TGy, (rst casein the formula of De nition 3), the
adwersarydoesnot acquireary new information about u.
Hence, his posteriorknowledge regardingu at TG, does
not changewith respecto theoneat TGy, ;. In particulay
if u never belongedto an anorymity setthroughoutT G,
the adversarys posteriorknowledgecorrespondso his prior
knowledge K,(J'ri(u). On the contrary (secondcase),if u
belongsto an anorymity setA sheis the potentialissuerof
arequestr 2 R(A). Theactualprobabilitythatu issuedone
requestin R(A) is 2 [0; 1]; hencewe call this parameter
thelearningrate of theadwersary Givena sensitve value#;,
the parameter ; accountsfor the probability that u issued
arequestat TGy, having that sensitve value (rst addend
in the formula). The secondaddend(1 ) accountsfor
the probability thatu did notissuea requestt T G, ; under
this hypothesisthe posteriorknowledge K ,(J'O)S(u; TGnm 1)
atTG,, 1 istakeninto account.

Proposition 1. Kpes(u; TGn) computedby the inference
methodillustrated in De nition 3 is a probability distri-
bution. It follows that the inference methodillustrated in
De nition 3 computeghe advesary's posterior knowled@.

Example 2. ContinuingExamplel, we showhowthe adver
sary computeshis posteriorknowledg aboutthe association
of userAlice and sensitivevalue#; after observingrequests
issuedat TG; and TG,. Recallthat the cardinality of the
set of SSdatais 12. At the r st time granule T G, for
ead userthe advessary's prior knowled@ K i is modeled
by the uniform distribution (Z;;:::; 7). Hence accoding
to De nition 3, KF}OS(AI ice;TG;) ' 0:43. After observing
requestsssuedat time granule T G, the advesary's pos-
terior knowledg is K ‘}05 (Alice; TG2) ' 0:54. Hence after
TG, the value that associatesAlice to #; is consideably

Algorithm 1. HMID algorithm

Input: k - minimum k-anorymity level; € - attackcontet; P; - list
of potentialissuersat TG;; R; - requestdssuedat TG;j;
tc1;:::;tcy - t-closenesgevels for eachlevel of
generalizatiorof SSdataMaxST- max level of
generalizatioradmittedfor STdata

Output: Ri0 - setof anorymizedrequests.

1 HMID(€;P;j;R;;k;tcy;:::;tc ; MaxST)

2 begin

3 RO :=;

4 P; := HilbertOrderingP; , location)

5 repeat

6 forall levelj = 1;:::;L of generlization of SSdatado

7 intn =k

8 Aj = rst n usersin P;

9 while MBR(Aj) MaxST and
t-cl(R(Aj);j; Ri) tcj andP; 6 ; do

10 n:=n+Kk

11 L Aj = rst n usersin P,

12 | QoSj = QoS(Aj;R(Aj);])

13 if no Aj existsthat satis estc; then

14 A := groupusersuntil: MBR(A) > M axST or
A= P

15 Ri :=RinR(A) ;Pi :=Pi nA

16 else

17 ] = level of generalizatiors.t. Q0S; is maximum

18 P =P I’lAJf

19 R(Aj—) = AnonymiszJ-—; R(Aj—))

20 R(Ap) = Obfuscat(aR(Aj—);j_)

21 R :=RY[ R(A))

22 until Ry = ; or Pj = ;

23 return R?

24 end

1 t-cl(R;j; Ri)

2 begin

3 D := PDFR; SSdata

4 DO := PDFR;; SSdath

5 return KL(D; D9

6 end

higher than the value for the other uses belongingto the
sameanonymitysetas Alice (0:54 vs 0:27).

IV. DEFENSE TECHNIQUE

In order to measurethe successof privagy attacks,as
well as of defensesagainstthem, it is necessanto de ne
the criteria by which the adwersarycanchoosethe SSdata¢
to be associatedvith a useru. If the adwersarychooseghe
correctvalue, the attackis successfulFor the sale of this
paperwe adopta criterion , which consistsin comparing
'n(#;u) = Kr(,{))s(u;TGn) At time granule TG, with the
averagevalue T, (#;; U) = —uzu Kf’f.(“;T ) computedat
time granule TGy, in the considereci)opulationof service
users U. Experimentalevidence (reportedin Section V)
shaws that this attack criterion is very effective. However,
our defensetechnique can be also applied to different




criteria. We call con dence | the function:
(
ifran(#;U)=0

n(#iu) = La(f0)  otharwise

T (#i5U)

Accordingto criterion , thevalue# choserby theadwersary
is the one having maximumecon dence:

n(#u) = ;ngxf n(#i;u)g:

HMID: defendingwith anonymityand obfuscation: As
for ary other defensetechnique the objective of our tech-
nigue, called historical multiple-issues defensg HMID), is
to guaranteg¢he necessarjevel of privacy while maximizing
the usefulnesof the data. To this aim, HMID adoptsboth
anorymity (obtainedby generalizingSTdatd and obfusca-
tion (obtainedby generalizingSSdata. Its speci ¢ goalis to
nd the combinationof the generalizatiorevels for STdata
and SSdatahat maximizesthe dataquality while enforcing
the requiredprivacgy level.

For the sale of LBS requestsgataquality canbe naturally
measureds a function of the generalizatiorlevel of users
locationand of requestparametersn anorymizedrequests.
However, differentapplicationsmay have differentrequire-
mentsthat determinetheir actual quality of service(QoS).
For instance, some services need very precise location
information, while being quite tolerantwith respectto the
generalizatiorof serviceparametersOn the otherhand,for
otherservicesaccurateusers'locationis notstrictly required,
while serviceparametergarethemostprominentdata.HMID
copeswith this aspectby supportingthe de nition of ary
kind of function L gos to determinethe QoS resultingfrom
requestgyeneralization.

The privacy leak (pl) determinedby an attackat a given
time granulecanbe measure@sthe percentagef usershat
are correctly associatedvith their SSdataby an adwersary
basedon context € and criterion . Hence,we de ne the
level of privacy L, as:(1 pl). The desiredevel of privacy
is guaranteedby enforcing k-anorymity coupled with a
variantof the t-closenesgechniqueoriginally proposedby
Li etal. [14] for privacy protectionof microdatareleased
from databases -anorymity ensureghat, basedon €, the
issuerof eachgeneralizedequestr is indistinguishablein
ananorymity setA of atleastk potentialissuers However,
as shovn in Examplel, k-anorymity is insufcient when
the adwersarymay obsene multiple requestsissuedin the
sametime granule.Indeed,in that casehe may derive the
associationbetweena user and a requestbasedon the
SSdatain that request,and on the distribution of SSdata
in the history of requestsoriginated from the anorymity
setsincluding that user Hence,consideringthe whole set
of requestsssuedin atime granule,our t-closeneswvariant
aims at counteractingthis kind of adwersarial inference
by smoothing the differencesamong the distribution of
SSdatain requestsoriginatedfrom the differentanorymity

sets. In particular for each anorymity set A we ensure
that the distance betweenthe distribution of SSdatain
requestsoriginating from A and the distribution of SSdata
in the whole set of requestsissuedduring the sametime
granuleis below a thresholdt. Given a privacgy threshold
h (0 < h < 1), the value of t sufcient to guarantee
L, his experimentallyestimated;jn general,a different
valueof t mustbe usedfor eachSSdatayeneralizationevel.
We measurethe differencebetweenthe two distributions
using the well known Kullback-Leibler(KL) divergence.lf
an anorymity set satis es k-anorymity but doesnot ful Il
our t-closenesyariant, HMID addsmore potentialissuers
to it (by further generalizationof requestlocation), until
the requiredlevel of t-closenesss reached;if that level
cannotbe enforcedrequest®riginatingfrom thatanorymity
set are discarded,and their issuersare informed. In most
casesthe numberL of levels in the hierarchy of SSdata
is quite limited. Hence,HMID tries all the possiblelevels
of SSdatageneralization,coupled with the nest-grained
generalizatiorof STdatathat satisfy both k-anorymity and
our t-closenessvariant, in orderto nd the combination
of SSdataand STdatageneralizatiorievels that maximizes
Lgos- As in most related works, for efciency reasons
we adopta heuristic algorithm in order to group usersin
anorymity sets.In particular asproposedn [15] we adopt
a stratgy basedon the Hilbert [16] space- lling curve. The
Hilbert space- lling cunveis afunctionthatmapsa pointin a
multi-dimensionakpaceinto aninteger;with this technique,
two points that are close in the multi-dimensionalspace
arealsoclose,with high probability, in the one-dimensional
spaceobtainedby the Hilbert transformation As it can be
evincedfrom its pseudo-codéreportedin Algorithm 1), the
compleity of HMID is O(L ’UT'Z). Since the dominant
factoris U, an optimizationconsistsin partitioning— based
on location — the whole set U of usersinto a number of
smaller subsets,and in applying HMID independentlyto
every such set consideringthe set of requestsoriginating
from it.

Algorithm: For eachtime granuleT G;, basedon the
setsR; of requestandP; of potentialissuersthealgorithm
returnsa setof anorymizedrequestsR?.

At rst (line 4), thealgorithmordersusersin P; according
to their index obtainedfrom the applicationof the Hilbert
space lling curve on their currentlocation. Then (lines 6
to 12), for eachlevel j of possibleSSdatageneralization,
a growing set A; of usersis groupedaccordingto the
Hilbert ordering until the minimum generalizationlevel
of STdata(computedas the minimum boundingrectangle
including every userin A;) satisfying both k-anorymity
and t-closenesss reached.The correspondindevel QoS
of QoSis thencomputed.

If it doesnot exist an SSdatageneralizationlevel sat-
isfying both k-anorymity andt-closenesglines 13 to 15),
requestarediscardedandtheir potentialissuersaareremoved
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from P;. Otherwise(lines 17 to 21), the generalizatiorievel
j of SSdatamaximizingthe QoSis chosen.The SSdatain
requestsoriginating from anorymity setA;- aregeneralized
atlevel j, while STdatain the samerequestsaregeneralized
by the minimum boundingrectangleincluding the location
of every userin Ar. Original requestsoriginating from Ay
are removed from R;, and the correspondinggeneralized
requestsare includedin R?. The algorithm continuesuntil
no otherrequestremainsin R;.

V. EXPERIMENTAL EVALUATION

In this sectionwe experimentally evaluate our defense
techniquan termsof enforcedevel of privacy andachieved
dataquality.

Experimentalsetup: Experimentswere performedon
syntheticdata obtainedusing the moving object generator
describedin [17]. The simulation modelsa population of
50,000 personsmoving in the San Franciscoarea,from a
randomstartingpoint to arandomdestinationduringatime
period of 200 minutes(eachone correspondingo a single
time granuleT G, ). A snapshoshoving the positionof part
of the usersin a time granuleis shavn in Figure 2. The
dimensionof the consideredareais about 100km?, with
an averagedensity of 500 personsper km?. This density
wasthe highestwe could obtainwith the usedgeneratotto
model 200 time granules.Note that this density is lower
than the real one in a urban area; when consideringa
higher density we expect the resulting generalizedareas
to be proportionally smallerthan the onesobtainedin our
experiments.Personsare equally divided into pedestrians
(thatmove at an averagespeedof 4 km/h) and peopleusing
public transportatior{averagespeedf 20 km/h), andupdate
their location at the LTS every one minute.

The populationis further divided into a group of active
uses of the proximity marketing service(i.e., usersissuing
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at least one anorymous query during the length of our
simulation; 20% of the whole population), and a group
of idle uses. Each actve user is randomly associated
with one of the 12 possible SSdatacontemplatedin our
motivating example; each requestcontainsthe SSdataof
its issuer We have performedthe experimentsunder 3
different conditions:i) low frequeny of requests(Freq.1:
each active user has a probability ranging from 25% to
0:016% of issuing a requestat a given time granule), ii)
mediumfrequeny of requests(Freq.2:from 75% to 6%),
and iii) high frequeng of requestqFreq.3:from 100% to
12:5%). In the following we compareHMID with different
defensetechniquesfrom adwersarys posterior knowledge
acquiredundercontext € basedon requestsssuedat time

techniquesis to keepthe L, higherthan0:8 (i.e., at each
time granulethe adwersaryhaslessthat 20% probability of
correctlyidentifying the SSdateaof a user).

We measurdy meansof the parametet qos thelevel of
QoS deriving from the transformationsof servicerequests
introducedby the defensetechniquesTo estimatethe QoS
we considerthe informationloss| Lss andl Lst (having
values from 0 to 1) deriving from SSdataand STdata
generalizationrespectrely. Formally, Lgos = (1 | Lss)
(1 ILst). In particular in a rst set of experiments
we measurel Lss adoptingthe information loss metrics
introducedin [18]; we measurd L st by afunctionlinearly
growing from O (perimeterof the generalizedocationis 0)
to 1 (perimetergreateror equalto 6Km). We call this metric
L Qos; -

Defensebased on k-anonymity: In the rst set of
experimentswe evaluated the application of a standard
k-anorymity techniqueto protectagainstattacksunder €.
In this experiment,we adoptthe Hilbert orderingto arrange
usersin anorymity sets.We have performedthe experiments
with differentvaluesof k. Resultsareshowvn in Figure3 and
Table I, and shav that this techniqueis not well-suitedto



k 20 40 80 160 320 640
Area (Km?) 003 | 0.08| 019 | 044 | 097 | 205

Perimeter (m) 620 | 1001 | 1579 | 2439 | 3694 | 5456
Tablel
K-ANONYMITY: LOCATION GENERALIZATION
k-ananymity mt-closeness = HMID
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Figure4. Comparisorbasedon QoS (L qos ;)

Freq.1l Perimeter (Km) Area (sz) % non-gen. % gen.1-l&. % gen.2-lev.
k-an. 5,48 2,06 100% 0% 0%
t-cl. 5,26 2,00 100% 0% 0%
HMID 3,57 1,09 39% 38% 23%
Freq.2 Perimeter (Km) Area (sz) % non-gen. % gen.1-l&. % gen.2-ley.
k-an. 5,72 2,23 100% 0% 0%
t-cl. 5,35 2,10 100% 0% 0%
HMID 2,96 0,86 32% 26% 42%
Freq.3 Perimeter (Km) Area (sz) % non-gen. % gen.1-l&. % gen.2-ley.
k-an. 6,16 2,57 100% 0% 0%
t-cl. 5,55 2,24 100% 0% 0%
HMID 2,30 0,58 18% 24% 58%

Comparisonn termsof: requestirequeng; perimeterandareaof
generalizedocation; % of requestswith generalizedSSdata

Tablell
GENERALIZATION (HMID WITH L gos ; )-

the consideredattack(De nition 3). Indeed,the minimumk

requiredto keepthe privacyleak belov 0:2 (k=640)leadsto

generalizedireagoo wide to guaranteea satishctoryquality
of service(2:2km?, with anaverageperimeterof 5:7 km; see
also Figure 4). The privacy leak grows considerablywhen
using smaller levels of k. For instance,in order to keep
the averagegeneralizedocation areabelov 1km? a value
of k 320 must be chosen;this value correspondgo a
privacy leak greaterthan 0:3.

Defensebasedon k-anonymityand t-closeness:This
techniqueis similar to HMID, with the only differencethat
obfuscationof SSdatais not allowed. In theseexperiments
thelevel of t sufcient to guarante¢herequiredprivacy level
(Lp 0:8)is empiricallyestimatedanda minimumlevel of
anorymity k = 20is chosenExperimentakesults(Figure4,
label t-closenessshaw that, given the sameprivacgy level,
this techniqueslightly outperformghe baselinek-anorymity
techniquein termsof L gos, .

k-anonymity u t-closeness = HMID
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Figure5. Comparisorbasedon QoS (L qos ,)

HMID technique: In the last set of experimentswe
evaluatedthe HMID technique.We empirically chosethe
levels of t-closenesdor threelevels of SSdateobfuscation:
non-generalizedSSdata generalizedone level (from 12
to 6 SSdaty and generalizedtwo levels (from 12 to 3
SSdaty The chosent-closenesdevels were sufcient to
guaranted_, > 0:8. Experimentalresults(Figure 4) show
thatHMID outperformghe otheronesin termsof QoSwhile
enforcingthe samelevel of privagy L. A deeperanalysis
of the resultsis shavn in Table Il. In particulay HMID
leadsto smalleraverageperimetersand areaswith respect
to the other techniques.The percentageof requestswith
generalizedsSdatadependson the frequeng of requests.

In orderto evaluatethe robustnesof HMID with respect
to different QoS metrics we performeda further set of
experimentsusing differentfunctionsfor | Lss andl Lst.
In particular in this set of experimentswe assigneda
proportionally growing information loss to growing levels
of SSdatageneralizationHence,| Lss is 0 if the service
parameteis not generalizedj Lss is % if it is generalized
onelevel; it is % if it is generalizedwo levels. With regard
to | Lst, we set no information loss if the perimeterof
the generalizedocationis lessthan 2Km; informationloss
grows logarithmicallyfrom 0 to 1 until the perimeteris up
to 6Km; it is 1 for perimeterdarger than 6Km. We call the
combinationof thesemetrics L gos,. Experimentalresults
arereportedin Figure5 andTablelll, andshowv that HMID
is robustwith respecto differentQoS metrics(possiblyde-
terminedby the speci ¢ requirement®f differentservices).

VI. CONCLUSION AND FUTURE WORK

In this paperwe addressedrivagy issuesfor recurrent
location-basedjueries We shovedthatif anadwersarymay
obsene multiple concurrentrequestsand similar requests
are issued several times by the sameissuers,the distri-
bution of different service parameterdn the requestscan



Freq.1 Perimeter (Km) Area (Km‘) % non-gen. % gen.1-le. % gen.2-ley.
k-an. 5,25 1,90 100% 0% 0%
t-cl. 5,28 2,02 100% 0% 0%
HMID 3,88 1,18 48% 36% 16%

Freq.2 Perimeter (Km) Area (Km‘) % non-gen. % gen.1-le. % gen.2-ley.
k-an. 5,72 2,23 100% 0% 0%
t-cl. 5,33 2,07 100% 0% 0%
HMID 3,03 0,86 34% 24% 42%

Freq.3 Perimeter (Km) Area(sz) % non-gen. % gen.1-le. % gen.2-lev.
k-an. 6,16 2,57 100% 0% 0%

t-cl. 5,63 2,30 100% 0% 0%
HMID 2,71 0,74 25% 27% 47%

Tablelll
GENERALIZATION (HMID WITH L gos , )-

signi cantly affect the level of privacy obtainedby current
anorymity-basedtechniques.We formalized this kind of
privagy threatswe proposecda defenseechniquebasedon a
combinationof anorymity andobfuscationandwe shaved
that this techniqueoutperformsonesbasedon k-anorymity
andon a variantof t-closenesin termsof quality of service
while enforcingthe requiredprivacy level.

Futureresearchdirectionsincludethe extensionof our for-
mal modeland defenseechniquego otherpossiblecontext
assumptionsin particular the ability of anadwersaryto have
speci ¢ prior knowledgeaboutthe associatioramongclasses
of usersandsensitve requestparametersOn the otherside,
the worst caseassumptionof the adwersaryhaving access
to completelocation information may be relaxed to more
realistic cases.
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