
Cor-Split : Defending Privacy in Data
Re-Publication from Historical Correlations and

Compromised Tuples

Daniele Riboni Claudio Bettini

D.I.Co., Università di Milano, Italy
{riboni,bettini}@dico.unimi.it

Abstract. Several approaches have been proposed for privacy preserv-
ing data publication. In this paper we consider the important case in
which a certain view over a dynamic dataset has to be released a num-
ber of times during its history. The insufficiency of techniques used for
one-shot publication in the case of subsequent releases has been previ-
ously recognized, and some new approaches have been proposed. Our
research shows that relevant privacy threats, not recognized by previous
proposals, can occur in practice. In particular, we show the cascading
effects that a single (or a few) compromised tuples can have in data
re-publication when coupled with the ability of an adversary to recog-
nize historical correlations among released tuples. A theoretical study of
the threats leads us to a defense algorithm, implemented as a significant
extension of the m-invariance technique. Extensive experiments using
publicly available datasets show that the proposed technique preserves
the utility of published data and effectively protects from the identified
privacy threats.

1 Introduction

There are many data repositories that store time-dependent data and that re-
quire recurrent release of recently acquired data to third parties. Many papers
have addressed the problem of anonymizing datasets for one-time publication
([1–4] among many others). The main defense technique consists in providing
anonymity by generalizing the values of quasi-identifier (QI) attributes, so that
each released tuple belongs to a group (called QI-group) having the same value
for the QI attributes. This intuitively guarantees that within a group the tuple
respondents cannot be distinguished. The cardinality of the group as well as the
distribution of sensitive attribute values in each group are relevant parameters
for the achieved anonymity. However, less attention has been given to privacy
threats that can occur upon re-publication of the same database after updates
have been performed. Indeed, it has been recognized that additional privacy is-
sues arise if the adversary obtains a history of tables anonymized as described
above. For example, by understanding that tuples t1 and t2 in different releases
refer to the same (anonymous) individual, the intersection of the candidate re-
spondents for t1 and t2 can lead to a privacy violation.

Table 1. Original and generalized microdata at the first and second release

(a) Original microdata at time τ1
Name Age Gender Zip Disease

Alice 33 Female 12000 cancer
Betty 31 Female 11000 bronchitis
Carl 35 Male 12000 AIDS

Doris 40 Female 13000 cancer
Erica 41 Female 14000 AIDS
Fiona 37 Female 13000 bronchitis

(b) Generalized microdata: 1st release

QI-group Age Gender Zip Disease

1 [31,35] × [11k,12k] cancer
1 [31,35] × [11k,12k] bronchitis
1 [31,35] × [11k,12k] AIDS
2 [37,41] Female [13k,14k] cancer
2 [37,41] Female [13k,14k] AIDS
2 [37,41] Female [13k,14k] bronchitis

(c) Original microdata at time τ2

Name Age Gender Zip Disease

Carl 35 Male 12000 AIDS
Doris 40 Female 13000 cancer
Fiona 37 Female 13000 bronchitis
Erica 41 Female 14000 AIDS
Grace 42 Female 13000 bronchitis
Hanna 42 Female 13000 cancer

(d) Generalized microdata: 2nd release

QI-group Age Gender Zip Disease

3 [35,40] × [12k,13k] AIDS
3 [35,40] × [12k,13k] cancer
3 [35,40] × [12k,13k] bronchitis
4 [41,42] Female [13k,14k] AIDS
4 [41,42] Female [13k,14k] bronchitis
4 [41,42] Female [13k,14k] cancer

As a motivating example, we consider data about patients and their cause of
hospitalization (called disease for simplicity in the rest of this paper) frequently
released by a hospital to certain institutions for data analysis. Each released
table contains one tuple for each patient hospitalized during the last L months.
In this scenario, certain tuples may be present in multiple releases, some tuples
that never appeared before can appear in new releases, and other tuples may
disappear in subsequent releases. Hence, we consider updates involving both
insertion and removal of tuples. For the sake of simplicity, we assume that when
a tuple appears in multiple releases, the corresponding private value remains the
same.1 We consider the realistic case that some tuples may be compromised;
for example, the actual disease of some patient may be known to the adversary
(note that, at least, every patient is aware of her own disease). The following
examples illustrate privacy threats that can occur in such a scenario.

Example 1. Consider the original microdata at time τ1 and τ2, shown in Tables 1(a)
and 1(c), and the generalized microdata in Tables 1(b) and 1(d). Note that each general-
ization guarantees anonymity according to state-of-the-art techniques (k-anonymity [1]
with k = 3, l-diversity [3] with l = 3, and t-closeness [4] with t = 0); moreover the gen-
eralization at time τ2 also satisfies m-invariance [5] with m = 3, a technique specifically
designed for data re-publication.

The respondents of tuples belonging to QI-group 3 in Table 1(d) are Doris, Fiona
and Carl, and the set of their candidate private values is {cancer, bronchitis, AIDS}.
Suppose that the tuple about Carl has been compromised, hence revealing to the
adversary that Carl has AIDS. This leads the adversary to derive by exclusion that
either Doris was hospitalized for cancer and Fiona for bronchitis, or vice versa.

1 The assumption, also made in [5], can be easily relaxed by associating an id to each
tuple as often happens for real data. Referring to our example, we can use a different
id for a new hospitalization of the same patient (possibly for a different disease) to
enable the same kind of attack.

Now, note that two new tuples have been inserted at τ2, namely those regarding
Grace and Hanna, while the tuples regarding Alice and Betty have been removed. In
order to understand what we mean by historical correlation, consider the histories of
QI-groups of Doris’ and Fiona’s tuples, i.e., QI-group 2 in Table 1(b) and QI-group 3
in Table 1(d). The set of respondents of the first group is {Doris, Erica,Fiona} while
for the second is {Carl, Doris, Fiona}, and the corresponding set of private values is
{cancer, bronchitis, AIDS} for both. By assumption, the presence in both releases of
tuples for Doris and Fiona imply that each of them preserved her private value across
releases. Hence, the possible private values for Doris and Fiona, considering that Carl’s
tuple has been compromised, were {cancer, bronchitis} even at τ1. Since at τ1 the
possible private values for the QI-group 2 (including a tuple whose respondent must
be Erica) were {cancer, bronchitis, AIDS}, the adversary can conclude that Erica was
hospitalized for AIDS.

One of the first attempts to address privacy issues in data re-publication
can be found in [6]. That work proposes a technique to preserve a weak form
of l-diversity when multiple versions of the same table are released over time
and the table is updated by insertions only. One shortcoming of that technique
is that microdata publishing is postponed until the conditions for guaranteeing
the required level of l-diversity are met. A similar scenario is addressed in [7]
and in [8] in the case in which tuples are released together with their unique
identifier or not, respectively. Even if the solutions proposed in those works do
not require delaying data publication, they are restricted to the case in which
tables are updated with insertions only, and cannot be applied when tuples
are removed. The first work to address privacy-preserving data re-publication
when both insertions and deletions are allowed is [5], in which the m-invariance
property is proposed. That property ensures that i) all the QI-groups in which
a tuple appears have the same set of private values (the cardinality of such
set must be greater than or equal to m), and ii) the set of private values of
QI-groups maximize the level of diversity (i.e., each QI-group does not contain
tuples having the same private value). However, m-invariance is prone to privacy
threats (as the ones exemplified above) that were not identified before, for which
we propose both a theoretical study and a defense algorithm.

In this paper we consider the same scenario considered in [5], admitting both
insertion and removal of tuples, but also considering the case that some tuples
may be compromised. We show that, even when a very small percentage of tuples
is compromised, the correlation that can be identified between tuples in different
releases can lead to serious privacy leaks.

The main contributions of our work are the following: a) We perform a proba-
bilistic analysis showing that in realistic cases the application of state-of-the-art
techniques for privacy preservation in data re-publication can fail to protect
the privacy of individuals. b) We propose the Cor-Split algorithm as a defense
technique, inspired by m-invariance, against attacks exploiting compromised tu-
ples and historical correlations. The algorithm is proved to correctly provide
protection. c) We show experimental results on public data directly comparing
Cor-Split with m-invariance: From the experiments we can conclude that the

extra protection offered by our algorithm has negligible costs over previously
known techniques.

The rest of this paper is organized as follows. Section 2 formalizes the privacy
threat we are considering. Section 3 reports a probabilistic analysis showing
the actual risk of a privacy breach according to the value of some parameters.
Section 4 illustrates the Cor-Split defense algorithm and its formal properties.
Section 5 shows experimental results, and Section 6 concludes the paper.

2 Model of privacy threats

In this section we formally model the notions of privacy breach, and the func-
tions that may be used by an adversary to restrict the set of private values
associated to each candidate tuple respondent. We call such functions private
value restriction functions.

2.1 Preliminary definitions

In this paper we denote by Tj an original table at time τj , and by T ∗j the general-
ization of Tj released by the data publisher; we denote byH∗1,j = 〈T ∗1 , T ∗2 , . . . , T ∗j 〉
a history of released generalized tables. We say that a tuple t has lifespan L if
the generalization t∗ of t appeared in each table T ∗i with i ∈ L; we denote by t.r
the respondent of t.

Tables are generalized by a generalization function G : T × H̃ ×R×Θ → T ∗,
where T is the set of possible original tables, H̃ is the set of possible histories
of original microdata tables, R is the collection of possible sets of tuples respon-
dents, Θ is the set of functions that map each respondent r to her set of possible
private values Sr, and T ∗ is the set of possible generalized tables. We denote by
Sr,j the set of possible private values of respondent r at time τj .

We assume that the schema of tables in H∗1,j remains unchanged throughout
the release history, and we classify the table columns into a set Aqi of quasi-
identifier attributes (for the sake of simplicity we assume that categorical values
are transformed in numeric ones), and into a single private attribute As having
domain S; t[A] is the projection of t onto A. Columns that do not act as either
quasi-identifier or private value are irrelevant with respect to privacy preserva-
tion and therefore they are ignored in the rest of the paper. Tuples in T ∗ are
partitioned into QI-groups; i.e., sets of tuples having the same values for their
quasi-identifier attributes. We denote by Q.R the set of respondents of tuples
belonging to a QI-group Q. The signature Q.sig of Q is the set of private values
of tuples belonging to Q.

We assume that the background knowledge available to an adversary is com-
posed of the generalization function G, and the set R of respondents, as well
as their QI values and their sets of possible private values. Moreover, as usual
in related work, we assume that, given a QI-group Q, an adversary may get
to know the exact set of respondents of tuples in Q. Note that the latter is a
conservative assumption, since in general the generalized QI values of tuples in
Q could match more users than the actual respondents of Q’s tuples.

Definition 1 (privacy breach). A privacy breach occurs when an adversary
knows the sensitive association between a user and one or more of her private
values.

2.2 Threats deriving from compromised tuples

As shown by Example 1, the presence of a compromised tuple in a QI-group Q
can be used by an adversary to restrict the set of possible private values of the re-
spondents of other tuples in Q. This kind of adversarial inference can be modeled
as a compromised tuples-based private value restriction (ct-pvr) function.

Definition 2 (ct-pvr function). Given a history of released tables H∗1,j, the
respondent r of a tuple t∗ in H∗1,j, r having prior set of possible private values Sr,
the set H∗1,j(Q, t) of QI-groups published in H∗1,j and containing a generalization
of t, and a set CH∗1,j

of compromised tuples published in H∗1,j, a ct-pvr function

is a function ct-pvr : R× 2S × 22T∗

× 2T∗ → 2S such that:

ct-pvr(r, Sr,H∗1,j , CH∗1,j
) =

= Sr \ {a ∈ S | ∃ Q ∈ H∗1,j(Q, t),∀u∗ ∈ Q, u∗[As] = a⇒ u∗ ∈ C}.

Note that in order to discard a value for a respondent of a tuple belonging to
Q, every tuple in Q having that value should be associated by the adversary to a
different respondent. The example below shows how the case of a compromised
tuple reported in Example 1 applies to Definition 2.

Example 2. Referring to Example 1, consider the history of released tables H∗1,2 cor-
responding to Tables 1(b) and 1(d), and the respondent r=Doris having set of possible
private values Sr = {cancer, AIDS, bronchitis}; the set CH∗1,2

of compromised tuples

known by the adversary includes the first tuple in Table 1(d). Hence, by applying
the ct-pvr function considering the QI-group 1, the adversary can discard the value
a=AIDS from Sr, since AIDS is known to be the private value of Carl’s tuple. Con-
sequently, after the application of the ct-pvr function the set of Doris’ possible private
values contain only cancer and bronchitis. The same reasoning can be applied with
r=Fiona.

2.3 Threats deriving from re-published microdata

As shown in Example 1, re-published microdata is prone to a specific class of
adversarial inference. In order to model this kind of privacy threats we introduce
the notion of historical correlation.

Definition 3 (historical correlation). Given a history of released tables H∗1,j,
and two QI-groups Q1 ⊆ T ∗i ∈ H∗1,j and Q2 ⊆ T ∗l ∈ H∗1,j (i 6= l), a historical
correlation between two sets of respondents R1 and R2 can be recognized if there
exist two QI-groups Q1 and Q2 (Q1 6= Q2 and Q1.S = Q2.S, where Q1.S and
Q2.S are the multisets composed of private values of tuples in Q1 and in Q2,
respectively) such that all the following conditions hold:

��

��

� �

� �

� �

� �

� �

� �

� �

� �

����

����

��

��

Fig. 1. Derivation of a historical correlation

c1) Q1.R ⊃ R1

c2) Q2.R ⊃ R2

c3) Q1.R \R1 = Q2.R \R2

where Q1.R and Q2.R are the sets of respondents of tuples belonging to Q1 and
Q2, respectively.

Theorem 1 (historical correlations). If two sets of respondents R1 and R2

are in a historical correlation, then the multiset composed of the private values
of respondents in R1 is equal to the multiset composed of the private values of
respondents in R2.

As it was shown in Example 1, historical correlations can be used to narrow
the set of candidate private values of a respondent, possibly leading to the exact
derivation of her private value. Such correlations are called historical since they
rely on the presence of the same sets of tuples in multiple views belonging to
a history of releases. For instance, in Example 1 an adversary was able to find
a historical correlation between R1={Carl} and R2={Erica} by observing QI-
group 2 and QI-group 3, released at time τ1 and τ2, respectively:

c1) (QI-group 3).R ⊃ {Carl}
c2) (QI-group 2).R ⊃ {Erica}
c3) (QI-group 3).R \ {Carl} = (QI-group 2).R \ {Erica}

Similarly, a historical correlation between {Alice, Betty} and {Doris, Fiona}
could be discovered observing QI-group 1 and QI-group 3.

Example 3. Consider Figure 1, which depicts two QI-groups Q1 = {t∗1, t∗2, t∗3, t∗4} and
Q2 = {t∗1, t∗2, t∗5, t∗6}, and the sets of respondent of Q1 and Q2, which are Q1.R =
{r1, r2, r3, r4} and Q2.R = {r1, r2, r5, r6}, respectively. In this situation a historical
correlation between R1 = {r3, r4} and R2 = {r5, r6} can be recognized. Indeed, the
set of respondents {r1, r2} (enclosed in a solid ellipse) appears in both Q1.R and Q2.R
and, since the private value of each tuple cannot change, the private values of r1 and
r2 are the same in Q1 and in Q2. As a consequence, the set of private values of {r3, r4}
is the same as that of {r5, r6} (the sets of tuples related by a historical correlation are
enclosed in a dashed ellipse).

The adversarial inference that exploits historical correlations to the aim of
restricting the set of possible private values of a tuple respondent can be modeled
according to the following historical correlation-based private value restriction
(hc-pvr) function.

Definition 4 (hc-pvr function). Given a history of released tables H∗1,j, the
respondent r of a tuple t∗ in H∗1,j, r having initial set of possible private values
Sr, and the set R(H∗1,j , r) of sets of respondents that are linked to r by a historical

correlation in H∗1,j, a hc-pvr function is a function hc-pvr : R× 2S × 22R

→ 2S

such that:

hc-pvr(r, Sr,R(H∗1,j , r)) = Sr \ {a ∈ S | ∃ R ∈ R(H∗1,j , r),∀r′ ∈ R, a /∈ Sr′,j}.

The following example shows how the adversarial inference presented in Ex-
ample 1 applies to Definition 4.

Example 4. Referring to Example 1, consider the history of released tables H∗1,2 cor-
responding to Tables 1(b) and 1(d), and the respondent r=Erica having set of possible
private values Sr = {cancer, AIDS, bronchitis}; R(H∗1,2, Erica) includes the set {Carl}
(i.e., a historical correlation relating Erica and Carl was discovered). The set of Carl’s
possible private values includes neither cancer nor bronchitis (i.e., the adversary knows
that the private value of his tuple is AIDS). Hence,

hc-pvr(Erica, SErica,R(H∗1,2, Erica)) =

= {cancer,AIDS,bronchitis} \ {cancer,bronchitis} = {AIDS}.

Then, after the second release the adversary derives that the set of possible private
values of Erica is {AIDS}. As a consequence, the sensitive association between Erica
and AIDS is discovered.

3 Probabilistic analysis

The actual risk of a privacy breach due to the threats we are considering depends
on several parameters. In this section we perform a probabilistic analysis of this
risk, assuming that each tuple has probability p of being compromised. Without
loss of generality, we also assume that released microdata satisfy them-invariance
principle, since – as it will be shown later in this section – this is a worst case
for our probabilistic analysis. As a consequence, we also assume that the set
S of private values includes at least as many values as the enforced level m of
m-invariance. We also assume that each tuple is released at most L times; i.e.,
for each tuple t, L is an upper limit for the cardinality of its lifespan L. The
probability of privacy breach is measured, depending on the parameters p, m, L
as well as others, as the result of the application of the private value restriction
functions described in Sections 2.2 and 2.3.

3.1 Probability of excluding private values due to compromised
tuples

As illustrated in Section 2.2, given a QI-group Q, if all the tuples in Q having
private value a are compromised, then an adversary can conclude that no other
respondent of tuples in Q has private value a. Of course, the probability that
such an event occurs decreases the higher is the number of occurrences of tuples

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24

p c
t(H

* 1,
j,t

)

Length of the release history (j)

p=0.005
p=0.01
p=0.02
p=0.04
p=0.08

(a) pct(H∗1,j , t)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24

p h
c(

H
* 1,

j,t
)

Length of the release history (j)

n=1 n=2 n=3

(b) phc(H∗1,j , t) with p = 0.04 and m = 6

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24

p p
b(

H
* 1,

j)

Length of the release history (j)

n=1 n=2 n=3

(c) ppb(H∗1,j , t) with p = 0.04 and m = 6

Fig. 2. Probabilistic analysis

in Q having private value a. Hence, in order to analyze the worst case we assume
that each private value is owned by at most one tuple in a single QI-group. This
property is called m-uniqueness in [5], and it is guaranteed by the enforcement
of the m-invariance principle. The corresponding privacy threat is quantified by
the following lemma.

Lemma 1. Given a history of released tables H∗1,j satisfying the m-invariance
principle, a set CH∗1,j

of compromised tuples belonging to H∗1,j, and a tuple t

having respondent r and lifespan LH∗1,j
in H∗1,j with max{|LH∗1,j

|} ≤ j, the prob-
ability that a private value is discarded from the set Sr of possible private values
of r through the application of function ct-pvr(r, Sr,H∗1,j , CH∗1,j

) is:

pct(H∗1,j , t) = 1− (1− p)|LH∗1,j
|
,

where p is the probability of a generic tuple to be compromised.

The plot shown in Figure 2(a) shows the value of pct(H∗1,j , t) with respect to
the number of releases containing the tuple (here we assume that the lifespan
of t covers the entire history) for different values of p. As expected, pct(H∗1,j , t)
grows with the length of the release history and with the value of p.

3.2 Probability of excluding private values due to historical
correlation

The probability that a private value is excluded from the set of candidate private
values due to historical correlations is given by the following lemma.

Lemma 2. Given a history of released tables H∗1,j satisfying the m-invariance
property, a tuple t having respondent r and lifespan LH∗1,j

in H∗1,j with max{|LH∗1,j
|} ≤

j, and the set R(H∗1,j , r) of sets of respondents that are linked to r by a histor-
ical correlation in H∗1,j, the probability that a private value a is discarded from
the set Sr of possible private values of r through the application of function
hc-pvr(r, Sr,R(H∗1,j , r)) is:

phc(H∗1,j , t) = 1−
(

1−
(
p− p

m

)n
)|LH∗1,j

|·bm
n c

,

where n = min
R∈R(H∗1,j ,r)

{|R|} is the minimum cardinality of sets of respondents in

R(H∗1,j , r), and p is the probability of a generic tuple to be compromised.

The plot shown in Figure 2(b) shows the value of phc(H∗1,j , t) with respect to
the length j of the release history (assuming the lifespan of t covers the entire
history) and to the minimum cardinality n of sets of respondents involved in his-
torical correlations. The released tables are assumed to satisfy the m-invariance
property with m = 6, and the probability of a tuple to be compromised is set to
p = 0.04. As expected, phc(H∗1,j , t) grows with the length of the release history
of the tuple and it is higher for smaller values of n.

3.3 Probability of privacy breach due to combined threats

After having separately considered the threats deriving from functions ct-pvr
and hc-pvr we can quantify the probability of privacy breach deriving from the
application of both functions.

Theorem 2 (probability of privacy breach). Given a history of released
tables H∗1,j satisfying the m-invariance principle, a tuple t having respondent
r and lifespan LH∗1,j

in H∗1,j with max{|LH∗1,j
|} ≤ j, and the set R(H∗1,j , r)

of sets of respondents that are linked to r by a historical correlation in H∗1,j,
if n = min

R∈R(H∗1,j ,r)
{|R|} is the minimum cardinality of sets of respondents in

R(H∗1,j , r), and p is the probability of a generic tuple to be compromised, then
the probability that a privacy breach is determined by functions ct-pvr and hc-pvr
at time j is:

ppb(H∗1,j , t) =
(

1− (1− p)|LH∗1,j
| ·
(

1−
(
p− p

m

)n
)|LH∗1,j

|·bm
n c)m−1

.

The plot shown in Figure 2(c) shows the value of ppb(H∗1,j , t) with respect to
the length j of the release history (assuming the lifespan of t covers the entire
history) and to the minimum cardinality n of sets of respondents involved in his-
torical correlations. The released tables are assumed to satisfy the m-invariance
property with m = 6, and the probability of a tuple to be compromised is set
to p = 0.04. It can be observed that the probability of privacy breach is very
high with n = 1. The value of ppb is lower than 0.15 with n = 2; with n = 3 the
probability of privacy breach is lower than 0.1.

4 Defense

4.1 Safety against private value restriction functions

In order to defend re-published microdata against private value restriction func-
tions based on compromised tuples and historical correlations, our technique
consists in enforcing a generalization principle – which we name (m,n)-historical
safety – with parameters that guarantee that the probability of privacy breach
is below a certain threshold h. Before defining (m,n)-historical safety it is nec-
essary to introduce a novel principle, which we name weak m-invariance. As it
will we shown in Section 4.2, this principle can be applied to avoid the disclosure
of historical correlations while minimizing the number of counterfeits.

Definition 5 (weak m-uniqueness). A generalized table T ∗j satisfies weak
m-uniqueness if each QI-group Q ⊆ T ∗j contains at least m tuples with different
private values, and the number of occurrences in Q of tuples with a given private
value is the same for every private value belonging to the signature of Q.

Definition 6 (weak m-invariance). A history of released tables H∗1,j satisfies
weak m-invariance if:

– ∀i ∈ [1, j], T ∗i satisfies weak m-uniqueness, and
– ∀i, i′ ∈ [1, j], t ∈ Ti, t

′ ∈ Ti′ , if t∗ ∈ Qi and t′∗ ∈ Qi′ , then Qi.sig = Qi′ .sig.

Weak m-invariance is a weaker version of the m-invariance principle. Indeed,
while m-invariance requires that all the tuples in a QI-group have different pri-
vate values, according to weak m-invariance QI-groups can contain tuples with
duplicate private values, provided that their multiplicity is the same. Hence,
it is easy to verify that m-invariance is a particular case of weak m-invariance
in which the multiplicity of tuples having a given private value in a given QI-
group is always 1. With respect to privacy preservation, it can be observed that
weak m-invariance provides the same level of diversity as the one provided by
m-invariance. On the other hand, the obvious shortcoming of having multiplici-
ties of private values greater than 1 in a QI-group is that in most cases the degree
of generalization of QI values of that QI-group would grow with the multiplicity.
Hence, as it will be shown in Section 4.2, an objective of our devised generaliza-
tion algorithm is to minimize the multiplicity of private values in QI-groups.

Definition 7 (hc-safety). Given a history of released tables H∗1,j and a QI-
group Q ⊆ T ∗i ∈ H∗1,j, Q is hc-safe with degree n if either: i) no set of respon-
dents is related with the respondents of tuples in Q by a historical correlation
in H∗1,j, or ii) the cardinality of each set of respondents that is related with the
respondents of tuples in Q by a historical correlation in H∗1,j is greater than or
equal to n.

Definition 8 ((m,n)-historical safety). Given m,n ∈ N, n ≤ m, a gener-
alization function G is (m,n)-historically safe if, for each table Tj+1, for each
history of released tables H∗1,j satisfying weak m-invariance, and

T ∗j+1 = G(Tj+1,H∗1,j , R, ϑ)

(R is the of tuples respondents, and ϑ is the function that maps each respondent
in R into her set of possible private values), the following conditions hold:

i) 〈H∗1,j , T
∗
j+1〉 satisfies weak m-invariance;

ii) each QI-group Q ⊆ T ∗j+1 is hc-safe with degree n with respect to 〈H∗1,j , T
∗
j+1〉.

The above definition states that, in order to be (m,n)-historically safe, a
generalization function must i) preserve weak m-invariance and ii) generate QI-
groups such that the cardinality of sets involved in historical correlations that
can be derived from them is greater than or equal to n. Condition i) is imposed
to protect against the attacks identified in [5]; condition ii) is imposed to protect
against historical correlations.

In order to guarantee that the probability of privacy breach for a tuple t is
below a certain threshold h it is necessary to have an estimate of the proba-
bility p of released tuples to be compromised, and to determine the maximum
cardinality L of its lifespan (i.e., the maximum number of times that t can be
republished). Note that L is an upper bound for the cardinality of LH∗1,j

shown
in the definitions of private value restriction functions (see Section 3). In general,
the values of p and L depend on the domain of the data. For instance, a hospital
releasing microdata about patients and diseases may estimate that an adversary
may get to know the sensitive association about no more than 4% of its patients
(hence, p = 0.04), and it can decide to republish each tuple at most 24 times
(hence, L = 24). Once values for p and L have been determined it is possible to
express the concept of safety of a generalization function against a threshold h.

Definition 9 (pvr-safe generalization function). A generalization function
G is pvr-safe with threshold h ∈ (0, 1] if, for any history H∗1,j of tables generalized
by G, ppb(〈T ∗1 , . . . , T ∗i 〉, t) < h for each i ∈ [1, j] and for each tuple t ∈ Ti.

4.2 The Cor-Split algorithm

Given parameters p and L, the chosen level m of weak m-invariance to be en-
forced, and the required threshold h, the goal of the algorithm proposed in this
paper is to enforce (m,n)-historical safety with the smallest possible value of

Input: Parameters p, L, m, h.
Output: Parameter n.

1: f(p, L,m, n) =
(

1− (1− p)L ·
(

1−
(
p− p

m

)n
)L·bm

n
c)m−1

2: if @ n′ ∈ [1,m] | f(p, L,m, n′) < h then
3: n := −1
4: else
5: n := min(n′ ∈ N+ | f(p, L,m, n′) < h)
6: end if
7: return n

Fig. 3. The n-Choose algorithm for determining the value of n

Input: Tj+1 is the microdata table at time τj+1; H∗1,j is the history of released tables;
H is the history of original tables; R is the set of tuples respondents; ϑ is the function
that maps each respondent in R into her set of possible private values; m,n ∈ N are
the parameters for historical safety; Aqi is the set of QI attributes.
Output: the generalized table T ∗j+1.

1: T ∗j+1 := ∅
2: S- := {t ∈ Tj+1 | ∀ T ∈ H, t /∈ T}
3: S∩ := Tj+1 \ S-
4: B := Division(S∩)
5: for all buckets B ∈ B do
6: Balancing(B,S-)
7: end for
8: B′ := Assignment(B, S-,m, ϑ)
9: for all buckets B ∈ B′ do

10: T ∗j+1 := Cor-Partition(T ∗j+1, B,A
qi, n)

11: end for
12: return T ∗j+1

Fig. 4. The Cor-Split algorithm

n that guarantees that the probability of privacy breach is below h. Since we
assume that those parameters do not change during the release history, the pa-
rameter n is chosen before the generalization of the first table, and it remains
unchanged throughout the release history. The algorithm for choosing n is shown
in Figure 3. Note that for certain values of p, L, m, and for a required threshold h,
the probability of privacy breach could be higher than h for every possible value
of n. In this case, microdata would not be released unless the value of parame-
ters L or m are changed. In the other case, microdata are generalized using the
value of n determined by the algorithm in Figure 3. Our devised generalization
algorithm, shown in Figure 4, is a significant modification of the algorithm for
m-invariant generalization proposed in [5]. Note that the algorithm in [5], though
enforcing weak m-invariance, does not provide guarantees about the cardinality
of sets of respondents involved in historical correlations. Moreover, our empirical
study (reported in Section 5) shows that QI-groups generated by that algorithm

may allow an adversary to derive several historical correlations between small
sets of respondents, determining severe privacy threats.

Overview of our generalization algorithm. Given the original table Tj+1

at time τj+1, the history H∗1,j of generalized tables published before τj+1, the set
R of respondents, and function ϑ, the output of our generalization algorithm is
the generalized table T ∗j+1. Our algorithm can be roughly divided into 4 phases.
While the first 3 phases are essentially identical to the ones of the algorithm
in [5], Phase 4 is different, since in that phase (m,n)-historical safety is enforced.
Adopting the notation of [5] we call S∩ the set of tuples in Tj+1 that have been
released before τj+1, and S- the remaining tuples in Tj .

– Phase 1: Division. This phase consists in partitioning the set of tuples in
S∩ into buckets. Each bucket is uniquely identified by a signature among the
ones of tuples in S∩, and it contains only tuples that appeared in H∗1,j in
QI-groups having the same signature of the bucket.

– Phase 2: Balancing. The balancing phase is applied in turn to each bucket.
Its goal is to guarantee that every private value of the bucket’s signature
is represented by the same number of tuples in the bucket. Buckets are
balanced by inserting tuples belonging to S- as long as this is possible; if no
other tuples in S- can be used to balance the bucket, counterfeit tuples are
inserted.

– Phase 3: Assignment. In this phase, the remaining tuples in S- are as-
signed to the existing buckets as long as they remain balanced. If no other
tuple can be assigned to the existing buckets without violating balancing,
new buckets are created, and the remaining tuples are assigned to the new
buckets such that the new buckets are balanced. The cardinality of the sig-
nature of new buckets is greater than or equal to m.

– Phase 4: Cor-Partition This phase is applied in turn to each bucket. In
this phase, buckets are partitioned into weak m-invariant QI-groups such
that, if a novel historical correlation can be identified by matching the new
QI-groups with those released during H∗1,j , then the cardinality of the sets
of respondents involved in it is greater than or equal to n; i.e., QI-groups
are hc-safe with degree n. For brevity, when the degree n of hc-safety is
clear, we say that a QI-group is hc-safe (or hc-unsafe), omitting the degree
of hc-safety. This phase is described in detail in the following of this section.

Cor-Partition. The algorithm pseudo-code is illustrated in Figure 5. Consider
a generic bucket B composed of s · l tuples (s ≥ m), where s is the cardinality of
the signature of B (named B.sig), and l ≥ 1. After an initialization phase (line
1), the algorithm creates, for each QI attribute in Aqi, a list of the tuples in B
partially ordered according to their value for that attribute (line 2). We denote
Li the list regarding attribute Aqi

i , and L the set of such lists. Then, a cycle is
repeated until every tuple in B is assigned to a QI-group (lines 3 to 20).

At first, each list is traversed in turn to obtain a weak m-invariant QI-group
Qi (lines 6 to 8) by selecting, for each private value belonging to the signature of

Input: parameters T ∗j+1, B,A
qi, n obtained from the Cor-Split algorithm.

Output: T ∗j+1 incremented with the anonymization of tuples in B.

1: int c := 0; L := ∅; Q(old)
i := ∅

2: for all Aqi
i ∈ A

qi do: List Li := order(B, Aqi
i); Di := ∅; L := L ∪ {Li}

3: repeat
4: Q := ∅; SP := ∅
5: for all Li ∈ L do
6: repeat
7: QI-group Qi := createQIG(Li, Di, B.sig)
8: until hcSafe(Qi, n, j) ∨ (|Qi| < |B.sig|)
9: if |Qi| < |B.sig| then: Qi := createQIG(Li, ∅, B.sig); Q

(temp)
i := Qi; c

′ := c
10: while

(
¬ hcSafe(Qi, n, j)

)
∧

(
c′ > 0

)
do

11: c′i := c′ − 1; Qi := Qi ∪QIGc′

12: end while
13: if ¬ hcSafe(Qi, n, j) then: Qi := Q

(temp)
i ; Qi.setCounterfeits()

14: end for
15: i′ := i ∈ N |Qi.sp = min

∀j∈N
{Qj .sp}

16: QIGc := Qi′ ; T
∗
j+1.removeDuplicates(QIGc) T ∗j+1 := T ∗j+1∪ QIGc

17: B := B \QIGc; c := c+ 1
18: for all Li ∈ L do: Li := Li.remove(QIGc); Di := ∅
19: until B = ∅
20: return T ∗j+1

Fig. 5. The Cor-Partition algorithm

the bucket, the first tuple in Li having that value, temporarily discarding those
tuples Li that would determine hc-unsafe QI-groups. Temporarily discarded tu-
ples are randomly chosen from tuples in Qi and replaced with other tuples in
B having the same private value, as long as either the resulting QI-group is
hc-safe, or no more tuples are available from B. In the latter case (lines 9 to
12), an hc-unsafe QI-group Q

(temp)
i is created, and it is merged with a growing

number of QI-groups previously created from the same bucket, until either the
resulting QI-group is hc-safe, or no other available QI-group remains. In the
latter case (line 13), Q(temp)

i is transformed by substituting a growing number
of tuples in it with counterfeits, until the resulting QI-group Qi is hc-safe. Note
that counterfeit tuples are inserted only in the case in which no other operation
is possible to generate a hc-safe QI-group.

Hence, after line 14, for each QI attribute in Aqi a hc-safe QI-group is avail-
able. For each of these QI-groups we call semiperimeter the sum of the normal-
ized lengths of the interval of each QI value of tuples in it. Obviously, smaller
semiperimeters correspond to finer-grained generalization. For this reason, the
QI-group Qj having the smallest semiperimeter is chosen (line 15). Then (lines
16 to 18), tuples in Qj are removed from B, as well as from the lists in L, and
are added to T ∗j+1, after having possibly removed duplicate tuples (indeed, in
line 11, Qj could have been merged with QI-groups already inserted into T ∗j+1).

Input: parameters Q,n, j obtained from the Cor-Split algorithm.
Output: true if Q is hc-safe with degree n; false otherwise.

1: for int i := 0 to j do
2: multiset (C,ω) := multiset(∅, ω)
3: for all generalized tuple t∗ ∈ Q do
4: respondent r := t∗.r
5: original tuple t := r.t
6: QI-group Q′ := t.QI(i)
7: if Q′ 6= null then
8: C := C ∪Q′.id
9: end if

10: end for
11: l := max

c∈C
(ω(c))

12: if |Q| − n < l < |Q| then
13: return false
14: end if
15: end for
16: return true

Fig. 6. Algorithm hcSafe for checking the hc-safety of a QI-group.

After that, if the bucket contains other tuples the algorithm continues from line
4; otherwise it returns the generalized table T ∗j+1.

Checking hc-safety. The algorithm for checking the hc-safety of a QI-group
to be released in T ∗j+1 is illustrated in Figure 6. Given a release history H∗1,j , a
QI-group Q and a degree n ∈ N, it follows from Definition 3 that in order to
check whether Q is hc-unsafe it is sufficient to check whether it exists a set of l
respondents whose tuples belonged to the same QI-group both in release T ∗j and
T ∗i ∈ H∗1,j , with l smaller than |Q| and greater than |Q|−n. Hence (lines 2 to 10),
for each release T ∗i ∈ H∗1,j the algorithm creates a multiset that contains, for each
respondent r of tuples in Q, the unique identifier of the QI-group that included
r’s tuple in release T ∗i (if it exists). Then (line 11), the maximum multiplicity
l of the elements of the multiset is calculated; i.e., l is the maximum number
of respondents of tuples in Q whose tuples also belonged to the same QI-group
in T ∗i . If it exists at least one release T ∗i such that the value l is smaller than
|Q| and greater than |Q| − n the algorithm determines that Q is hc-unsafe with
respect to the degree n; otherwise Q is hc-safe with degree n.

pvr-safety. The following lemma states a sufficient condition to ensure that a
generalization function is pvr-safe.

Lemma 3 (sufficient condition for pvr-safety). Let p be the probability of
released tuples to be compromised, L the maximum number of times that a single
tuple can be republished, h ∈ (0, 1] the threshold for pvr-safety, and m ∈ N+ the

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 4 6 8 10 12 14 16 18 20 22 24

nu
m

be
r

of
 h

c-
un

sa
fe

 Q
I-

gr
ou

ps

release (j)

n=1
n=2

(a) m = 6, |T ∗| = 60, 000

 0

 3000

 6000

 9000

 12000

 15000

 18000

 21000

 2 4 6 8 10 12 14 16 18 20

nu
m

be
r

of
 h

c-
un

sa
fe

 Q
I-

gr
ou

ps

release (j)

n=1
n=2

(b) m = 6, |T ∗| = 200, 000

Fig. 7. Number of hc-unsafe QI-groups generated by the m-invariance algorithm

required level of weak m-uniqueness. Then, if G is a generalization function en-
forcing (m,n)-historical safety with n = n-Choose(p, L,m, h), then G is pvr-safe
with threshold h.

The soundness of the Cor-Split algorithm is proved by the following theorem.

Theorem 3 (pvr-safety of the Cor-Split algorithm). The Cor-Split algo-
rithm computes a pvr-safe generalization function.

5 Experimental evaluation

Experiments were performed using a real census dataset published by the Min-
nesota Population Center and available at http://ipums.org/. The dataset is
composed of 600, 000 tuples. Each tuple stores information about an individual;
it includes 4 QI-attributes (age, birthplace, education, gender) and one private
attribute income having 50 possible values, each one representing an income
range. In order to evaluate our technique with respect to different scenarios, we
simulated insertions and deletions from the dataset at different rates. Hence, we
started with a table T1 including 200, 000 (resp. 60, 000) tuples, and we obtained
a table T2 by randomly deleting 10% (resp. 33%) of T1’s tuples and inserting
the same number of tuples randomly chosen from unpublished tuples. The same
procedure was repeated with the subsequent tables to obtain a history having
length 21 (resp. 24). In these experiments we assumed that the probability of a
tuple to be compromised is p = 0.04, the enforced level of (weak) m-invariance is
m = 6, the maximum length of the release history of each tuple is L = 21 (resp.
L = 24), and the safety threshold is h = 0.1. Given these parameters, the level
n of (m,n)-historical safety to be enforced is n = 3. Results of experiments with
different values for parameters m and n (m = 4÷10, n = 1÷5) are not reported
here for lack of space; however, they essentially lead to the same conclusions as
the ones reported below.

Historical correlations determined by m-invariance. The first set of ex-
periments aimed at evaluating the threat determined by private value restriction

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 2 4 6 8 10 12 14 16 18 20 22 24

N
um

be
r

of
 c

ou
nt

er
fe

its

Length of the release history (j)

|T*|=60000 |T*|=200000

(a) m = 6, n = 3

Fig. 8. Number of counterfeits introduced by the Cor-Split algorithm

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

m
ed

ia
n

er
ro

r

expected selectivity

m-invariance
Cor-Split

(a) m = 6, n = 3, |T ∗| = 60000

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

m
ed

ia
n

er
ro

r

expected selectivity

m-invariance
Cor-Split

(b) m = 6, n = 3, |T ∗| = 200000

Fig. 9. Query error

functions when microdata are generalized applying the m-invariance technique.
In particular, we adopted the algorithm in [5] to generalize microdata tables, and
at any release we counted the number of released QI-groups that were hc-unsafe
with respect to the degree n = 3; hc-unsafe QI-groups were recognized using the
algorithm reported in Figure 6. Results in the considered scenarios are illustrated
in Figure 7, and show that many released QI-groups may allow an adversary to
derive historical correlations between small sets of respondents (having cardinal-
ity 1 or 2), determining relevant privacy threats.

Counterfeits and query error. The second set of experiments was performed
on microdata generalized by a Java implementation of the Cor-Split algorithm.
Tuples were generalized in order to enforce (m,n)-historical safety with m = 6
and n = 3. At first, we measured the number of counterfeit tuples introduced
by Cor-Split. Results are illustrated in Figure 8 and show that in both scenarios
the algorithm introduced a few counterfeits. Then, we compared the utility of
microdata generalized by Cor-Split and by the algorithm for m-invariance in
terms of the precision in answering aggregate queries (e.g., count the number
of individuals in the table whose QI-values belong to certain ranges). Queries
were randomly generated according to different values of expected selectivity, i.e.,
expected ratio of tuples to be returned by the query. For each value of expected

selectivity, 10, 000 queries were randomly generated. The imprecision in query
answering was calculated in terms of the median error of query answers. The
results reported in Figure 9 show that the accuracy of query answering obtained
by Cor-Split is very close the to one observed with the use of the generalization
algorithm for m-invariance, with the advantage of protecting from the threats
we have identified.

6 Conclusions and future work

In this paper we have addressed privacy threats that may arise when a certain
view over a dynamic dataset has to be released multiple times during its history.
We have shown the limits of existing techniques to protect privacy in the case
an adversary is able to recognize correlations between sets of tuples released
in different views and even a small percentage of tuples is compromised. After
having formalized the problem, we have provided a probabilistic study of the
identified threats, and we have proposed a sound defense algorithm that has
been experimentally validated. Future work includes the study of other attacks
based on correlation between different releases. In particular, we are currently
investigating the case in which tuples for the same respondent in different releases
can have different private values; in this scenario our defense can still be effective
against the attacks considered in this paper, but the adversary may exploit a
different kind of historical correlation, based on private values associated to
candidate respondents in a history of released tuples.

Acknowledgments

This work has been partially supported by the Italian Ministry of University
and Research under grant PRIN-2007F9437X (project ANONIMO).

References

1. Samarati, P.: Protecting Respondents’ Identities in Microdata Release. IEEE Trans-
actions on Knowledge and Data Engineering 13(6) (2001) 1010–1027

2. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: Efficient Full-domain
k-Anonymity. In: Proc. of SIGMOD 2005, ACM Press (2005) 49–60

3. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-Diversity:
Privacy Beyond k-Anonymity. In: Proc. of ICDE 2006, IEEE Comp. Soc. (2006)

4. Li, N., Li, T., Venkatasubramanian, S.: t-Closeness: Privacy Beyond k-Anonymity
and l-Diversity. In: Proc. of ICDE 2007, IEEE Comp. Soc. (2007) 106–115

5. Xiao, X., Tao, Y.: m-Invariance: Towards Privacy Preserving Re-publication of
Dynamic Datasets. In: Proc. of SIGMOD 2007, ACM Press (2007) 689–700

6. Byun, J.W., Sohn, Y., Bertino, E., Li, N.: Secure Anonymization for Incremental
Datasets. In: Proc. of SDM 2006, Third VLDB Workshop, Springer (2006) 48–63

7. Pei, J., Xu, J., Wang, Z., Wang, W., Wang, K.: Maintaining k-Anonymity against
Incremental Updates. In: Proc. of SSDBM 2007, IEEE Comp. Soc. (2007)

8. Fung, B.C.M., Wang, K., Fu, A.W.C., Pei, J.: Anonymity for Continuous Data
Publishing. In: Proc. of EDBT 2008, ACM (2008) 264–275

