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Abstract

The large scale adoption of adaptive services in perva-
sive and mobile computing is likely to be conditioned to
the availability of reliable privacy-preserving technologies.
Unfortunately, the research in this field can still be consid-
ered in its infancy. This paper considers a specific perva-
sive computing scenario, and shows that the application of
state-of-the-art techniques for the anonymization of service
requests is insufficient to protect the privacy of users. A
specific class of attacks, called shadow attacks, is formally
defined and a set of defense techniques is proposed. These
techniques are validated through the use of a simulator and
an extensive set of experiments.

1 Introduction

The proliferation of cheap sensing technologies, pow-
erful portable devices, and wireless networks has recently
enabled the diffusion of new classes of context-aware per-
vasive services; i.e., services that adapt themselves to the
current situation of users in a pervasive computing environ-
ment.

Server-side adaptation involves the communication to
the service provider of private information about users, such
as their current activity and location, personal data, inter-
ests, preferences, and, in some cases, physiological data.
Hence, one of the most challenging issues in this research
area is to devise effective techniques for preserving users’
privacy while guaranteeing a satisfactory quality of service
as a result of the adaptation process. Indeed, it has been
shown that simply hiding users’ explicit identifiers (e.g.,
SSN) may not be sufficient to guarantee privacy, because
in several cases the real user identity can be inferred from
the other data communicated to the service provider.

To this aim, various approaches have been proposed for
privacy preservation in pervasive and mobile computing
([7, 21, 17, 8]), mainly based on access control (e.g., [22])

or anonymization (e.g., [10, 3]). While access control pro-
vides a very robust solution for controlling the disclosure of
private information, we argue that a solution based solely on
access control is not well suited to several kinds of services.
Consider, for instance, a location-based service (LBS). In
this case, if location is the data to protect and the ser-
vice provider is considered an untrusted entity, completely
negating access to the user’s location data would determine
the impossibility of providing the service at all. A more
flexible solution to this problem is provided by anonymiza-
tion techniques. In this case, the data to be protected is
communicated to the service provider after having been par-
tially generalized or suppressed, and consequently the iden-
tity of the actual issuer becomes indistinguishable in a set of
k potential issuers. This kinds of techniques are generally
referred to as k-anonymity techniques [10, 16, 5].

As argued in [5], the soundness of privacy protection
techniques strongly depends on the assumptions about the
knowledge available to possible adversaries. Techniques for
enforcing k-anonymity in LBS have focused on protection
against attacks performed on the basis of data included in
users’ service requests. In this paper, we present a novel
class of attacks on k-anonymity, that can be performed on
the basis of service responses and users’ behavior (sets of
users’ context data acquired by the adversary) as a result of
the received responses. In order to exemplify a similar at-
tack, we introduce a pervasive computing scenario that will
be used throughout this paper.

Consider the pervasive system of a gym (called PerGym
and sketched in Figure 1) in which users wear a smart
watch that collects context data from body-worn sensors
to continuously monitor data such as user’s position (ac-
quired through a user-side indoor positioning system), the
used equipments (through RFID), and physiological param-
eters. These data are communicated from users to the vir-
tual trainer service of the gym included in a request to ob-
tain suggestions for the next exercise. Since physiological
data are particularly sensitive (because they can reveal im-
portant details about a person’s health status), they need to
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Figure 1. The PerGym scenario

be anonymized. For this purpose, requests are sent through
an encrypted channel to a context-aware trusted anonymizer
(CTA) in charge of enforcing k-anonymity. Context data are
kept up-to-date on the CTA by periodical updates through
an encrypted channel. Suppose that the gym system is con-
sidered untrusted by its users (hence, from a privacy per-
spective, the gym system is considered a possible adver-
sary). The gym system is also able to collect a subset of the
context data known by the CTA; in particular, it can con-
tinuously monitor the users’ positions through a server-side
positioning system. Since it knows users’ identities, their
position, and the gym map, it is anytime aware of who is
using a given equipment.

We claim that in a similar scenario state-of-the-art
k-anonymity techniques are insufficient to preserve users’
privacy. For instance, suppose that user u1 submits a request
r1 for the next exercise to be performed. Data included in
r1 are partially generalized by the CTA (which also replaces
u1’s identity with a pseudo-id p1) in order to make u1 indis-
tinguishable between k potential issuers. Then, the result-
ing request r′1 is sent to the gym service provider, which re-
sponds with a list of possible equipments, and correspond-
ing exercises, communicated by service response s1. If u1

under pseudo-id p1 starts to use a suggested equipment that
was suggested only to p1, since the PerGym system can
monitor part of the behavior of the potential issuers (i.e.,
their movements and activity in the pervasive space) and
knows their identities, it can associate with high probabil-
ity the pseudo-id p1 to the actual issuer u1 of r′1 . Hence,
k-anonymity is broken as a consequence of this attack, that
we call shadow attack.

To the best of our knowledge, shadow attacks have never
been addressed before. They have some similarities with at-
tacks considering multiple requests issued by the same user,
for which the notion of k-anonymity has been extended to
historical k-anonymity [6]. These attacks mainly rely on
identifying a set of requests as issued by the same user, and
then on using the information sent with these requests. For
example, considering the location and time of the user as
reported in the requests, it is possible to reduce the number
of potential issuers to those that actually were observed in
all those locations at those times. In shadow attacks, even if
pseudo-ids are continuously changed in order to avoid the

identification of a trace of requests from the same issuer,
privacy can still be at risk, since the attack is not based on
analyzing the next request of the user, but on correlating the
observation of actual users with the content of service re-
sponses. Clearly, shadow attacks depend on the knowledge
of service responses, which are not taken into account by
attacks on historical k-anonymity.

Shadow attacks can be applied only to those scenarios in
which service responses can influence the future behavior
of users. However, we believe that this is the case for many
pervasive computing scenarios, in which users issue service
requests for having access to physical resources (e.g., in [13,
19]), receiving directions (e.g., in [2, 9]) and suggestions
(e.g., proximity advertising [1, 12]).

The main contributions of this paper can be summarized
as follows:

◦ We show that state-of-the-art techniques for privacy
protection through anonymity are insufficient in per-
vasive computing scenarios;

◦ We formalize a new kind of attack, called shadow at-
tack;

◦ We propose defense techniques for shadow attacks and
present an experimental evaluation.

The paper is structured as follows: in Section 2 we pro-
vide preliminary information about privacy protection; in
Section 3 we exemplify and formalize shadow attacks; in
Section 4 we propose defense techniques; in Section 5 we
report experimental results in a simulated scenario; Sec-
tion 6 concludes the paper.

2 Preliminaries

A privacy threat is generally intended as the possibility
that an adversary associates the user’s identity to private
information (PI). This association is denoted sensitive as-
sociation (SA). In order to prevent the release of the SA it
is possible to modify the released data in order to increase
the uncertainty about the user’s identity or about the private
information. The uncertainty on the user identity is called
anonymity: it has been introduced for data base systems
([20]) and then adapted to LBS services ([4]). The main
idea of anonymity is to make the actual issuer of a LBS
request indistinguishable in a set, called anonymity set, of
potential issuers. The cardinality of the anonymity set de-
termines the degree k of anonymity achieved for a given
request.

In order to violate the user’s privacy, i.e. discovering
the SA, an adversary can access external knowledge (e.g.,
positioning systems, telephone books) that joined with data
included in a request can restrict the set of candidate issuers.



Categories of data that joined with external knowledge can
increase the probability of reconstructing the SA are defined
quasi-identifier (QI)([18]). Clearly, which elements of a re-
quest act as QI strongly depend on the external knowledge
available to the adversary. In most research papers on pri-
vacy, spatio-temporal information are considered QI since
the adversary often happens to know the position of users.

Most k-anonymity techniques are based on the gener-
alization/suppression of QI data, and on the replacement
of the user’s unique identifier with a null value or with a
pseudo-id. Hence, each request r is transformed by a third
part (in our scenario the CTA) into a request r′ with the
identity and the QIs components appropriately modified to
enforce k-anonymity.

3 Attacking anonymity with shadow attacks

In this section we show that state-of-the-art anonymity
techniques for privacy protection are insufficient when ap-
plied to a pervasive computing scenario, and we formalize
shadow attacks.

3.1 Attacking anonymity in the PerGym sce-
nario

Consider the following example:

Example 1 Suppose that the CTA enforces k-anonymity
with k = 10, and that, in a given time granule, three users
u1, u2 and u3 submit a service request r1, r2, and r3, re-
spectively. Hence, before forwarding the three requests to
the service provider, the CTA anonymizes the requests by
generalizing the quasi-identifiers in the request (i.e., time,
user’s location and activity, age) to make the issuers indis-
tinguishable in a set of at least 10 users. The other ser-
vice parameters (e.g., physiological data) are not general-
ized. However, the latter data are assumed not to be quasi-
identifiers, then they cannot help the adversary in associat-
ing the requests with their actual issuers. Suppose that, as
a result of generalization, u1, u2 and u3 belong to the same
anonymity set {u1, u2, . . . , u10}. Upon receiving (or inter-
cepting) the three generalized requests r′1, r′2, and r′3, the
adversary cannot definitely associate a request r′i with its
issuer uj; in fact, from the adversary’s perspective, each re-
quest r′i has 1/10 probability of having been issued by user
uj (for simplicity, we assume the adversary is performing a
uniform attack [5] on k-anonymity).

The above example shows how k-anonymity can be prof-
itably used for preserving users’ privacy from attacks per-
formed by considering service request parameters and con-
text data (e.g., users’ location and activity). However, a dif-
ferent class of attacks on k-anonymity needs to be consid-
ered; i.e., attacks based on the analysis of service responses

and users’ behavior as a consequence of the received ser-
vice responses. We call this class of attacks shadow attacks,
because for performing them the adversary must (electroni-
cally or, in extreme cases, physically) shadow the behavior
of the possible issuers belonging to the anonymity set. The
following example illustrates a shadow attack.

Example 2 Suppose that the service provider, based on lo-
cation of the user in the gym, gender, age, and physiolog-
ical data, suggests – by means of the service responses –
the following gym equipments (e.g., exercise bikes, rowing
machines) to the three users (obviously, the adversary does
not know the association between user identities and ser-
vice responses; in fact, in the request the real user identity
is substituted by a pseudo-id):

◦ equipments e1, e2 and e3 are suggested to user u1;

◦ equipments e1, e4 and e5 are suggested to user u2;

◦ equipments e5, e6 and e7 are suggested to user u3.

We recall that the suggested gym equipments are sets of
equipments (e.g., “one of the exercise bikes”); the system
does not suggest an individual equipment (e.g., “the first
exercise bike in room R1”). For the sake of simplicity, also
suppose that an authorization mechanism is adopted for en-
suring that each user can only use an equipment that the
service provider suggested to her in a given time window
(this restrictive assumption will be relaxed in the definition
of defense techniques). Then, as a consequence of the re-
ceived service responses, suppose that the three users de-
cide to use the following equipments:

◦ an equipment e1 is used by user u1;

◦ an equipment e1 is used by user u2;

◦ an equipment e6 is used by user u3.

Since the system can continuously monitor the behavior of
users in the gym, the adversary can perform a shadow at-
tack to decrease the provided anonymity level, or even to
definitely associate a user with her service request – and,
hence, with the private information included in the request.
In particular:

◦ Since users u1 and u2 decided to use the same equip-
ment e1 the adversary cannot be sure if u1 issued r′2
and u2 issued r′1 or vice versa; i.e., they are still in-
distinguishable among themselves. However, the pro-
vided anonymity level for u1 and u2 decreases from
10-anonymity to 2-anonymity.

◦ Since user u3 decided to use an equipment e6 that was
not suggested to any other user in the anonymity set,
the adversary can unambiguously associate u3 with



her request r′3; hence, even enforcing k-anonymity at
the time of the service request, the private information
included in the request performed by u3 is disclosed as
a consequence of a shadow attack.

The above example is illustrative of the peculiar char-
acteristics of shadow attacks, which must be taken into ac-
count for devising effective defense techniques:

◦ Privacy protection depends on the behavior of the user
with respect to service responses. In fact, if user u1

would have chosen to use an equipment e3 it would
have been unambiguously associated with her service
request, since e3 was not suggested to any other user
in her anonymity set;

◦ The behavior of users can impact on the privacy level
of other users. In fact, if user u2 would have chosen
to use an equipment e4, then user u1 would have been
unambiguously associated with her service request (by
elimination);

◦ Service responses can influence the future behavior of
users; hence, a malicious service provider (or an in-
termediate entity that can maliciously modify service
responses) can produce responses that facilitate the as-
sociation between a user and her service request (e.g.,
suggesting the use of resources that were not suggested
to any other user in the anonymity set).

Given their peculiar characteristics, shadow attacks can
be applied to a wide range of pervasive computing scenar-
ios. In fact, several pervasive computing services are aimed
at suggesting the use of physical resources (e.g., meeting
rooms, printers, projectors) to users on the basis of context.

3.2 Formal definition of shadow attacks

As pointed out in [5], in order to devise sound defense
techniques and evaluate their properties, a framework for
formally defining concepts like attack, external knowledge,
and defense function is needed. For this reason, in this paper
we adopt the formal framework proposed by Bettini et Al.
in [5], and extend it to define shadow attacks and defense
techniques against them.

We recall that, given a set of requests and generalized re-
quests R, a set of users’ identities I , and the external knowl-
edge Γ available to an adversary, an attack is defined in [5]
as follows:

Definition 1 (from [5]) An attack based on knowledge Γ
is a function AttΓ : R × I → [0, 1] such that for each
generalized request r′,

∑

i∈I

AttΓ(r′, i) = 1.

Hence, the value of AttΓ(r′, i) represents the probability of
the individual i to be the issuer of the generalized request
r′, as inferred from an attack performed on the basis of Γ.

It must be noted that Definition 1 models attacks per-
formed on the basis of generalized service requests and ex-
ternal knowledge; service responses and users’ behavior as
a consequence of the received responses are not explicitly
taken into account. Even if these latter data can be consid-
ered part of the external knowledge available to the adver-
sary, in order to ease the definition and evaluation of shadow
attacks and their defense strategies we extend the frame-
work proposed in [5] with the following definitions:

Definition 2 Given a service s, a generalized request r′

to that service, the external knowledge Γ available to
the adversary, and the corresponding anonymity set Λ =
AnonΓ(r′), we call

Φs,Λ,τ

the set of responses to requests for s by users in Λ during
time interval τ .

Definition 3 Given the external knowledge Γ available to
the adversary, the anonymity set Λ, and the time interval τ ′,
we call shadowed behavior ΨΓ,Λ,τ ′ the set of context data
about users in Λ during τ ′ acquired by the adversary.

Finally, we can formally define a shadow attack as fol-
lows:

Definition 4 A shadow attack based on service responses
Φs,Λ,τ and shadowed behavior ΨΓ,Λ,τ ′ (τ ′ immediately fol-
lows τ ) is a function SAttΦs,Λ,τ ,Ψ

Γ,Λ,τ′
: R × I → [0, 1]

such that for each generalized request r′,
∑

i∈I

SAttΦs,Λ,τ ,Ψ
Γ,Λ,τ′

(r′, i) = 1.

Similarly to AttΓ, the function SAttΦs,Λ,τ ,Ψ
Γ,Λ,τ′

mod-
els the probability of an individual i to be the issuer of the
generalized request r′. Actually, shadow attacks can be con-
sidered a particular class of attacks in which external knowl-
edge includes service responses and shadowed behavior of
users:

Property 1 Given Definition 1, a shadow attack is an at-
tack in which

Γ ⊇ {Φs,Λ,τ , ΨΓ,Λ,τ ′}.

In the following, we illustrate how the example presented
in Section 3.1 can be formally described:

Example 3 Continuing Examples 1 and 2, we have that:

◦ I corresponds to the identities of users in the gym;



◦ s is the virtual trainer service suggesting the next exer-
cise on the basis of context;

◦ the private information is physiological data;

◦ Λ = {u1, u2, . . . , u10};

◦ τ is the time interval during which u1, u2 and u3 sub-
mit their service requests;

◦ Γ includes the exact location of users in the gym, the
gym map, and users’ identities;

◦ τ ′ is the time interval during which u1, u2 and u3 move
to a new equipment in order to perform a new exercise,
after having received suggestions from s;

◦ Φs,Λ,τ corresponds to the first itemized list in Exam-
ple 2;

◦ ΨΓ,Λ,τ ′ corresponds to the second itemized list in Ex-
ample 2;

◦ the values of SAttΦs,Λ,τ ,Ψ
Γ,Λ,τ′

with respect to users
u1, u2 and u3 and generalized requests r′1, r′2 and r′3
are reported in Table 1.

SAttΦs,Λ,τ ,Ψ
Γ,Λ,τ′

(r′i, uj) u1 u2 u3

r′1 0.5 0.5 0
r′2 0.5 0.5 0
r′3 0 0 1

Table 1. Probability of an individual uj to be
the issuer of generalized request r′i as in-
ferred from a shadow attack (from Example 3)

4 Defense techniques

In this section we propose defense techniques for shadow
attacks.

Estimating privacy threats In order to apply effective
protection techniques for shadow attacks, it is necessary
to estimate the level of privacy threat deriving from pos-
sible users’ behaviors. To this aim, we call p(Eui,ωj

) the
probability of the event “user ui chooses alternative ωj”,
where ωj ∈ Ωai

, and Ωai
is the set of alternatives pro-

posed by service response ai. The success of a shadow at-
tack also depends on the conditional probability p(Ψ′

ui,ωj
⊆

ΨΓ,Λ,τ ′ |Eui,ωj
) that the adversary gets to know which of

the alternatives has been chosen by users (we call Ψ′
ui,ωj

the set of context data sufficient to characterize the behav-
ior consequent to Eui,ωj

).

For simplicity, in the following we assume that any of
the alternatives ωj ∈ Ωai

proposed by a service response ai

has the same probability of being chosen by user ui; i.e.,
p(Eui,ωj

) = 1

|Ωai
| . Moreover, we also assume that the

adversary can precisely know which alternative has been
chosen by users; i.e., p(Ψ′

ui,ωj
⊆ ΨΓ,Λ,τ ′ |Eui,ωj

) = 1.
Those assumptions are not realistic in most scenarios; how-
ever, our privacy protection techniques can be applied to
any other probability distribution.

Finally, we call pui,Ψj
the probability that an adversary

correctly associates the identity ui to her service request
by observing the behavior Ψj consequent to the choice of
alternative ωj (e.g., observing that ui is using equipment
ej).

Example 4 Consider the anonymity set and the service re-
sponses illustrated in Example 2. Suppose that the three ser-
vice responses are cached by the CTA, and sent at the same
time to the three users. Table 2 shows the values of pui,Ψj

for users ui and behavior Ψj (that corresponds to the use
of equipments ej). For instance, the probability pu1,Ψ1

that
an adversary correctly associates the request of user u1 to
her identity by a shadow attack is 0.83 if she would choose
equipment e1 (since it was also suggested to u2), while it is
1 if she would choose equipments e2 or e3 (that were sug-
gested to her alone).

pui,Ψj
Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7

u1 0.83 1 1 × × × ×

u2 0.83 × × 1 0.83 × ×

u3 × × × × 0.83 1 1

Table 2. Privacy threats table PTT of Exam-
ple 4

Even if usability issues are out of the scope of this paper,
we point out that users are informed about privacy threats
corresponding to possible behaviors – by means of user-
friendly interfaces – in order to support them in choosing
privacy-conscious behaviors. Moreover, our privacy protec-
tion strategy includes the suppression by the CTA of those
service responses that are associated with a high privacy
threat.

Definition 5 We call the table providing values of pui,Ψj

for users belonging to Λ and their possible behaviors as a
result of service responses privacy threats table PTT .

Enlarging τ Obviously, the more users in Λ submit ser-
vice requests, the more difficult is for an adversary to asso-
ciate service responses to users’ behavior. Hence, a possi-
ble defense technique consists in choosing a time interval



τ (during which users’ requests are cached by the CTA be-
fore being anonymized and sent to the service provider) that
is sufficiently large to ensure that – in most cases – a rele-
vant portion of users in Λ submit a service request. How-
ever, since the value of τ impacts on the service response
time, this technique must be applied with caution, in order
to avoid the introduction of an excessive delay in service
provision.

Generating fake requests Similarly to what proposed
in [11] for privacy protection in location-based services, a
further defense strategy for shadow attacks consists in the
use of fake requests, i.e., fictitious requests – seemingly
submitted by users in Λ – sent by the CTA to artificially
decrease the values of pui,Ψj

in PTT .
In general, the use of fake requests should be avoided,

since – from the service provider perspective – it may im-
ply a high overhead for the infrastructure. Hence, in our
proposal the CTA generates fake requests only if an adver-
sary has high probability of associating real identities with
service requests (i.e., if most values in PTT are close to
1). Unfortunately, an analysis of PTT before sending fake
requests is unsafe. In fact, sending fake requests after real
ones would allow the adversary to easily recognize fakes.
As a consequence, the algorithm we devised generates fake
requests only if the ratio between real requests (i.e., requests
submitted by users in Λ) and k is below a certain threshold
f .

Example 5 Consider the scenario depicted in Example 2,
and suppose that, for that scenario, the chosen value of f is
0.5. Hence, the CTA generates 2 fake requests r′4 and r′5 that
are sent – together with the real ones and in random order
– to the service provider. The service provider responds as
follows:

◦ equipments e1, e5 and e6 are suggested as a response
to r′4;

◦ equipments e1, e2 and e5 are suggested as a response
to r′5.

The service provider responds to the real requests as stated
in Example 2. The corresponding PTT is shown in Table 3.

pui,Ψj
Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7

u1 0.31 0.5 1 × × × ×

u2 0.31 × × 1 0.31 × ×

u3 × × × × 0.31 0.5 1

Table 3. Privacy threats table PTT with the
generation of fake requests (Example 5)

As can be seen from Table 3, the use of fake requests
determines a relevant improvement in the values of PTT ;
in fact, the best (lower) value of pui,Ψj

decreases from 0.83
to 0.31 for each user.

Continuously updating privacy threats estimates As it
is shown by the following example, the values and shape of
the privacy threats table PTT changes when the behavior
of users in Λ, as observed by an adversary on the basis of Γ,
can be associated to one or more service responses.

Example 6 Continuing Example 5, suppose that user u1

decides to use equipment e2. Then, PTT is changed, as
shown in Table 4. As a consequence, behavior Ψ5 becomes
safer than Ψ1 for user u2 (they were equally safe before
observation of Ψ1 of user u1).

pui,Ψj
Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7

u2 0.33 × × 1 0.31 × ×

u3 × × × × 0.31 0.5 1

Table 4. Updated PTT (Example 6)

In order to exploit this feature, our defense strategy in-
cludes a mechanism based on asynchronous notifications
for informing users about changes in privacy threats as a
consequence of other users’ behavior.

5 Experimental evaluation

In this section we present an experimental evaluation of
our proposal. In order to evaluate the effectiveness of our
defense techniques against shadow attacks, we have simu-
lated the PerGym scenario using the Siafu [14] context sim-
ulator. Since in this set of experiments we concentrated on
protection against shadow attacks, and not against generic
attacks on k-anonymity, we simplified our assumptions, and
we assumed that the only quasi-identifier included in ser-
vice requests is user location. Hence, the generalization
function takes into account only location. The development
of an algorithm for multidimensional k-anonymity in per-
vasive services will be the subject of future work.

Simulation of the PerGym scenario We have simulated
the PerGym scenario by means of the Siafu context simula-
tor [14]. Siafu provides facilities for describing the physical
characteristics of an environment (e.g., walls, furnishings,
devices, equipments), as well as for modeling the behavior
(e.g., movements, activities) of users within that environ-
ment as sets of context data that change with time. Figure 2
shows a screenshot of the PerGym environment and context
data generated by Siafu.



(a) PerGym environment (b) Context data

Figure 2. PerGym model

Experiments have been performed with a population of
300 users moving in a gym of 3600 m2. The gym comprises
20 types of equipments. At generation time, each user is as-
sociated to a set of context data randomly initialized. Con-
text data include personal information (e.g. name, gender,
age), current location (in the form of latitude - longitude de-
grees), current activity (e.g., exercising, resting), video and
music preferences (chosen among values organized in hier-
archies), and physiological data (e.g., blood pressure, heart
rate, skin conductance).

Context data influence the future behavior of users; ex-
ercises last on average 14 minutes, and are followed by on
average 1 minute of rest. When a user finishes an exercise,
she has 90% probability of sending a request asking for the
next exercise; in the other case she leaves the gym. When a
user leaves the gym, the arrival of a new user is simulated.

k-anonymity and generalization Our first experiment
was aimed at evaluating the degree of generalization of
users’ location on the basis of the level k of k-anonymity.
For performing generalization we have adopted the Dico-
tomicArea algorithm [15], both for its good performance
and ease of implementation.

Figure 3 shows that the average area of the generalized
users’ locations increases almost linearly with k. The “stair-
case” behavior of the plot is due to the behavior of the Di-
cotomicArea algorithm, as explained in [15].

In our scenario, the average generalized area is approx-
imately 30 m2 with k = 10; with values of k greater than
20, the average generalized area is greater than 90 m2. With
values of k greater than 40, the average generalized area be-
comes too large for the kind of services envisioned in the
PerGym scenario.

Defense based on τ In a second set of experiments we
evaluated the effectiveness of the defense technique based
on an enlargement of the time granule τ during which users’
requests are cached by the CTA before being generalized
and sent to the service provider. The greater τ , the more

Figure 3. Degree of generalization of location
on the basis of k

Figure 4. Average probability p′ui,Ψj
depend-

ing on τ and k

difficult is for the adversary to associate requests to their
actual issuers. However, since τ introduces delays in ser-
vice responses, the choice of τ is constrained by the service
characteristics. In our case, since we assume that users can
take a few minutes of rest between an exercise and the sub-
sequent, we have performed our experiments with values of
τ between 1 minute and 5 minutes. We recall that each user
submits a service request on average every 15 minutes.

Figure 4 shows the average probability p′
ui,Ψj

that an ad-
versary unambiguously associates the identity of user ui to
her actual generalized service request r′i by observing the
behavior Ψj (that corresponds to the use of a suggested
equipment j); i.e., SAtt(r′i, ui) = 1. As expected, re-
sults show that the larger τ , the lower the privacy threat. In
particular, given a k = 10 degree of k-anonymity, values of
p′ui,Ψj

are greater than 0.89 with τ ≤ 2 minutes; they are
less than 0.59 with τ ≥ 3 minutes.

We also studied the probability p′′ui,Ψj
that an adversary



Figure 5. Average probability p′′ui,Ψj
depend-

ing on τ and k

unambiguously associates the identity of user ui to her ac-
tual generalized service request r′i in the case ui chooses the
safest alternative j. The safest alternative is the one (or one
of the ones) having the lower value of pui,Ψj

in the privacy
threat table PTT. Figure 5 shows that p′′

ui,Ψj
is also strongly

influenced by τ . Low levels of privacy threat (p′′
ui,Ψj

< 0.2)
can be obtained only with τ ≥ 5 minutes and k > 10. The
choice of this value of τ is not well suited to our scenario,
since it would introduce an excessive delay in service re-
sponses. Hence, the next set of experiments aimed at eval-
uating the use of fake requests for providing better privacy
protection while using a more reasonable value of τ .

Defense based on fake requests When the choice of τ
is constrained by service requirements, privacy protection
can be enhanced by the use of fake requests. In this set of
experiments we have chosen a value of τ = 2 minutes, that
corresponds to an average additional delay of 1 minute for
each service request. We have evaluated both p′

ui,Ψj
and

p′′ui,Ψj
with different values of f (between 0 and 0.5) and k.

We recall that our privacy protection technique includes the
generation of fake requests if the ratio between real requests
(submitted by users in Λ) and k is below a given threshold
f .

Figures 6 and 7 report experimental results, and show
that the use of fake requests decreases the level of privacy
threat. In particular, with the use of fake requests and f =
0.5 the average value of p′ui,Ψj

with k = 10 is 0.6 (it is 0.89

without the use of fake requests). If we consider p′′
ui,Ψj

,
results show that low levels of privacy threat can be obtained
with k = 10 and τ = 2 minutes if our defense technique
based on fake requests is applied with f = 0.5.

Figure 6. Average probability p′ui,Ψj
depend-

ing on f and k

Figure 7. Average probability p′′ui,Ψj
depend-

ing on f and k

6 Conclusions and future work

In this paper we have shown that state-of-the-art
k-anonymity techniques for privacy protection are insuffi-
cient when applied to many pervasive computing scenarios.
We have formalized shadow attacks and proposed defense
techniques, which have been experimentally evaluated in a
simulated environment.

Some of the most relevant issues we are currently inves-
tigating are a) the definition of a comprehensive measure of
privacy, b) an extension of our privacy protection techniques
to support multidimensional k-anonymity for context-aware
services, and c) an extension to support the dynamic case,
i.e., when an adversary is able to reconstruct the sensitive
association by means of requests issued by the same user in
different time intervals.
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